SAASTUSE KOMPLEKSNE VÄLTIMINE JA KONTROLL

Parim võimalik tehnika veiste intensiivkasvatuses

Tartu 2013
2. Sisukord

2. Sisukord ... 2
3. Kirjanduse ja seadusandlike aktide loetelu, kaasatud ekspertide nimekirja .. 4
4. Terminid, mõisted ja lühendid .. 8
5. Täitev kokkuvõte .. 9
6. Sissejuhatus ... 11
 6.1. Veised tõugude, vanuse- ning toodangurühmade lõikes .. 12
 6.2. Veiste pidamisviisid .. 13
 6.3. Sõnnikuhooldus .. 15
7. Kulutus- ja heitetasemed veiste intensiivkasvatuses ... 18
 7.1. Toorainete erikulu .. 18
 7.1.1. Söödakulu .. 18
 7.1.2. Vee kulu .. 18
 7.1.3. Energiakulu ... 20
 7.2. Heitehogused ... 21
 7.2.1. Veisesõnniku üldiseloomustus ... 22
 7.2.2. Saasteainete eritumine loomapidamishoonen . .. 23
 7.2.3. Saasteainete eritumine sõnniku- ja kääritusjäagi hoidlast .. 26
 7.2.4. Saasteainete eritumine sõnniku ja kääritusjäagi laotamisel ... 29
 7.2.5. Müüd ... 32
 7.2.6. Jäätmed .. 32
8. Tehnika vastavuse viimine parima võimaliku tehnikaga .. 33
 8.1. Hea põllumajandustava ... 33
 8.1.1. Tegevuste planeerimine .. 33
 8.1.2. Lauda asukoha valik .. 33
 8.1.3. Töötajate koolitus .. 34
 8.1.4. Omaseire korraldus ja andmestik .. 34
 8.1.5. Remont ja hooldus ... 34
 8.1.6. Hädaolukord .. 35
 8.2. Söötmise korraldus .. 35
 8.2.1. Üldine taust .. 35
 8.2.2. Söötmine ... 35
 8.2.3. Jootmine ... 38
 8.3. Vee efektiivne kasutamine .. 40
 8.4. Lüpsmine ... 41
 8.4.1. Vaakumseadmed ... 41
 8.4.2. Piimahutid .. 41
 8.4.3. Lüpsiseadmed .. 42
 8.5. Energia efektiivne kasutamine .. 47
 8.6. Sõnniku eemaldamine laudast .. 48
 8.6.1. Mobiilised sõnnikukäärlusseadmed ... 48
 8.6.2. Kettkraapkonveierid ... 48
 8.6.3. Lattkraapkonveierid .. 49
 8.6.4. Skreiperseadmed .. 49
 8.6.5. Vedelsõnnikküüsteemid .. 50
8.7. Heitkogust kõrvaldamise tehnikad veisesõnniku kasvatuses .. 51
 8.7.1. Heitkogust kõrvaldamise lõasapidamisega lautades ... 52
 8.7.2. Heitkogust kõrvaldamise vabapidamisega lautades ... 52
 8.7.3. Lenduvate saasteainete kõrvaldamine nn. „toruotsa“ tehnooogiatega 52
8.8. Lõhna vähendamine ... 53
8.9. Heitkoguste vähendamine hoidlastest .. 54
8.9.1. Heitkoguste vähendamine tahesõnnikuhoidlastest 54
8.9.2. Heitkoguste vähendamine poolvedel- ja vedelsõnnikuhoidlastest 54
8.9.3. Söödahoidlad ... 55
8.10. Sõnniku töötlemine .. 56
8.10.1. Tahesõnniku kompostimine .. 56
8.10.2. Vedelsõnniku separaerimine .. 56
8.10.3. Vedelsõnniku aeroobne töötlemine (aereerimine) 57
8.10.4. Vedel- ja tahesõnniku anaeroobne kääritamine (biogaasi tootmine) ... 57
8.10.5. Vedelsõnniku keemiline ja/või bioloogiline töötlemine 60
8.11. Sõnniku käitlustehnoloogiad ... 63
8.11.5. Vedelsõnniku vedamine hoidlast põllule 67
8.11.6. Vedelsõnniku ladustamine põllule .. 67
8.11.7. Vedelsõnniku laadimine põllul laoturisse 67
8.11.8. Vedelsõnniku laotamine ja mulda viimine 68
8.12. Tahesõnnik ... 75
8.12.2. Tahesõnniku käitlustehnoloogiad ... 76
8.12.3. Tahesõnniku laadimine .. 76
8.12.4. Vedamine hoidlast põllule ... 77
8.12.5. Tahesõnniku laotamine ja mulda viimine 78
8.13.1. Poolvedela sõnniku omadused ... 80
8.13.2. Käitlustehnoloogiad .. 80
8.13.3. Laotuseks valmendamine ... 81
8.13.4. Hoidlast laadimine ... 81
8.13.5. Laotamine ja mulda viimine .. 82
8.15. Müra vähendamise tehnikad ... 84
8.15.1. Ventilatsioonisüsteemist lähtuv müra 84
8.15.2. Laudatöödest lähtuv müra .. 85
8.15.3. Helibarjääride paigaldamine ... 85
9. Parim võimalik tehnika ... 85
9.1. Hea pöllumajandustava ... 85
9.2. Veiste intensiivpidamine .. 86
9.3. Lüpsmine ja lüpsiseadmed ... 86
9.4. Sõnniku eemaldamine laudast .. 87
9.5. Heitkogused õhku ... 87
9.6. Energia ... 88
9.7. Sõnniku ladustamine ... 89
9.8. Sõnniku laotamine ... 89
10. PVT hindamine ettevõtetes (lautades) .. 91
10.1. Piadamisvisi (loomapidamishoone) ja sõnniku eemaldussüsteem 91
10.2. Sõnniku ladustamine ja –hoidlad .. 92
10.3. Sõnniku laotamine ... 92
10.4. Lüpsisüsteem ... 93
11. Kokkuvõte ... 94
3. Kirjanduse ja seadusandlike aktide loetelu, kaasatud ekspertide nimetöö

3.1. Seadusandlikud aktid

6. Tööstusheite seadus - RT I, 16.05.2013 1 - [https://www.riigiteataja.ee/akt/116052013001]

3.2. Kasutatud kirjandus

2. Electricity and Water Consumption at Milking. Farm Test-Cattle nr. 17. (By Jan Brøgger Rasmussen and Jørgen Pedersen) Danish Agricultural Advising Service, National Centre, Building and Technique. Aarhus, 2004, 42 pp
17. Inform. 2007. FarmTest af gylleforsuringsanlæg fra Inform A/S. Landbrugsinfo.-www.landbrugsinfo.dk/Tvaerfaglige/FarmTest/Sider/FarmTest_af_gylleforsuringsanlaeg_fra_In.aspx

Juhendi täiendamisel osalesid:
Allan Kaasik – Eesti Maaülikool, dotsent
Heli Kiiman – Eesti Maaülikool, dotsent
Nelly Oinus – O.N.Nõuanne OÜ, konsulent
Peep Pitk – Tallinna Tehnikaülikool, nooremteadur
Kalvi Tamm – Eesti Maaviljeluse Instituut, teadur

Juhend on koostatud Keskkonnaministeeriumi tellimusel.
4. Terminid, mõisted ja lühendid

Anaeroobne kääritamine – bioloogiline protsess, mille käigus toimub erinevate mikroorganismide toimmel orgaanilise aine lagundamine hapnikuvalas keskkonnas ning protsessi lõpp-produktideks on näiteks biogaas ja kääritusjääk.

\[\text{CH}_4 \] metaan
\[\text{CO}_2 \] süsihappegaas
\[\text{H}_2\text{S} \] väavelvesinik
\[\text{KA} \] (ka) – kuivaine.

Kääritusjääk e. digestaat – biogaasireaktoris kääritatud sönnik või sönniku ja lisasubstraadi segu.

Kompostimine – kontrollitud tingimustes kulgev aeroobne eksotermiline bioloogiline lagundamisprotsess, milles orgaaniline aine laguneb bakterite ja seente ning muude organismide elutegevuse toimel homogeensiks huumusrikkaks materjaliks

Poolvedelsönnik – põllumajandusloomade ja/või -lindude väljaheidete, allapanu, söödajääkide, tehnooolgilise- ja sademetevsee segu, mille kuivainesisaldus on vahemikus 8-20%.

\[\text{O}_2 \] hapnik
\[\text{OA} \] (oa) – orgaaniline aine.

ORSS – osaratsiooniline segasööt.

\[\text{NH}_3 \] ammoniaak

Segasööt – ka mikserööt, polükomponentne monosööt on põhisöötade, söödakonsentraatide ja söödalisandite segu, mis on koostatud vastavalt loomade spetsiifilisele söödavajadusele, lähtudes komponentide konstentratsioonimääradest ning mida söödakse loomadele vabalt.

Sügavallapanusönnik – põllumajandusloomade ja/või -lindude väljaheidete, allapanu, söödajääkide, tehnooolgilise- ja sademetevsee segu, mille kuivainesisaldus on vahemikus 25% või rohkem.

Taheesönnik – põllumajandusloomade ja/või -lindude väljaheidete, allapanu, söödajääkide, tehnooolgilise- ja sademetevsee segu, mille kuivainesisaldus on vahemikus 20-25%.

TRSS – täisratsiooniline segasööt.

Vedelsönnik e. lüga – põllumajandusloomade ja/või -lindude väljaheidete, allapanu, söödajääkide, tehnooolgilise- ja sademetevsee segu, mille kuivainesisaldus on vähem kui 8%.
5. Täitevkokkuvõte

Keskonnakompleksluba on dokument, mis annab õiguse kasutada käitist või selle osa viisil, mis tagab tegevusvaldkonnas toimuvate tegevuste võimalikult vähese kahjuliku mõju keskkonnale. Kompleksloaga sätestatavad nõuded peavad peamiselt tagama vee, õhu ja pinnase kaitse ning käitises tekkinud jäämete kättesaadavuse viis, mis hoiab üle saastuse endamise ühes keskkonnaelementist (vesi, õhik, pinna) teise.

Saastatus on saastamisest põhjustatud oluline ebasoodne olukord. Heide on välisõhku, vette või pinnasesse otseselt või kaudselt väljutatav aine, vibratsioon, soojus või müra. Parim võimalik tehnika on tehnilise arendustegevuse ning selles rakendatavate töömeetodite kõige tõhusam ja kõige paremini välja arendatud tase. Parim võimalik tehnika on praktiliselt sobiv heite piirväärtuste ja muude loa nõuete määramiseks, et välitada, või kui see pole teostatav, siis vähendada heidet ja selle mõju keskkonnale tervikuna. Parima võimaliku tehnika võistest tähendab:

- **Tehnika** – käsitses kasutatavat tehnoloogiat ja käitise kavandamise, ehitamise, hooldamise, käitamise, tegevuse lõpetamise ning käitise sulgemise viisi.

- **Võimalik tehnika** – käitajale mõistlikul viisil kättesaadavat (kodu- või välismaist) nüüdse tehnoloogiat, mille kasutamine on kulusid ja eelised arvesse võttes majanduslikult ja tehniliselt vastuõetav ning tagab keskkonnanoorte parima täitmisest.

Parim – tõhusaimat keskkonna kui terviku kaitseks kõrgel tasemel.

Keskonnakompleksluba on kohustuslik intensiivse veise kasvatusega tegelevale ettevõttele, kus peetakse üle 400 piimalehma või üle 533 ammlehma või üle 800 noorvesi, kelleks loetakse üle kahest kuni kuhest vanuseid lehmud, kuni põegi misest ja üle kahest kuu vanuseid pille. Kui ühes käitises kasvatatakse vähemalt kahe keskoleva punktis nimetatud veiste kategooriat, arvutatakse käites peetavate veiste arv kokku, kasutades järgmist koefitsiente: piimalehm 1,0; ammleh 0,75; noorves 0,5. Kompleksloa kohustuslikus otsustatakse võrdluses piimalehmade jaoks sättestatud kõnnisvõimsusega.

Peamine keskkonda ohustav faktor intensiivses loomakasvatuses on sõnnik. Käesolev juhendis on komplekselt käsitletud sõnniku ja sõnniku majandusse suunatud küsimusi. Juhend on jagatud järgmisteks olulisemateks alaosadeks: hea põllumajandustava; söötmine kui väljaheidete koguse ja keemilise koostise otsene mõjutaja; pidamisvõimalused; sõnniku eemaldamise tehnilised aspektid; sõnniku ladustamine ja käitlemine ning sõnniku laotamine. Käsitletud on ka teisi intensiivsete loomakasvatuse kasnevaid (jäämed, reovesi, müra, vee- ja energia tarbimine).

- Pidev töötajate täiendamine.
- Ressurssid (energia, vee, sõdad), tekkivate jäämete (k.a. sõnnik) ning kasutatavate mineraal- ja organiliste väetiste täpne arvestus.
- Juhendid ettenägematute (keskkonnaohutuse) olukordade likvideerimiseks.
- Hoolduskavade ja –vahendite olemasolu tagamaks ettevõtte struktuuri ja seadmete tõrgeteta töö.
- Reeglipärane materjalide taimnine ning toodangu ja jäämete äravenda.
- Vääramaplani olemasolu.

PVT on veiste söömine ratsiooniga, mis koosneb kvaliteetsetest söödastest ja mille toitefaktorite sisaldus vastab loomade füsioloogilisele tarbele. Toitefaktor, mille sisaldust ratsioonis tuleb jälgida on: kuivaine,
metaboliseeruv energia, metabolismeeruv proteen, kiud (toorkuud ja/või ADF, NDF), kaltsium ning fosfor. Proteiini ainevahetuse kui potentiaalse keskkonnasaaste allika (proteiini ainevahetuse üheks olulisemaks lõpp-produktiks on väljapeidetest lenduv ammoniak) hindamisel tuleb lähtuda vasta protseini bilanstit (VPB) ja piima karbamiidi sisaldusest. Veiste füsioloogiline toitefaktorite tarve sõltub geneetilisest toodangapotentsiaalil, vanusest, kehamassist ja laktatsioonifäärist. Füsioloogilisele tarbele vastav söömine eeldab süstemaatilist söötade laboratoorset keemilise koostise määratmist.

Pidamisvõisid. Veiste pidamisel rakendatakse suurtöötmises peamiselt vabapidamistehnoloogiat. Lõaspidamise osatähtsus väheneb pidevalt. PVT on loomade pidamise viis, mis tagab nende heaolu ning liigiamuse käitumise võimaluse. Vabapidamisega lautades on PVT optimaalne suuresega kuivad puhkelatrid, piisava laiuse ning pindalaga liikumiskäigud, loomade ja puhkelatrite arvu ning sõõdulava pikkuse vastavus. Lõaspidamisega lautades on PVT loomade pidamine optimalse pikkusega, kuivad asemetad. Vasikate lõaspidamine ei ole PVT (keelatud loomakaitseteaduse tagajärjel).

Sõnniku eemaldamise tehnoloogiad. PVT sõnniku eemaldamisel vabapidamisega lautast on skreerseeramideid sõõtmis-puhkealal, restpöörand liikumiskäikudes, valg- või ühtkanalite süsteem või osaline restpöörand sõõtmis-puhkealal ning liikumiskäikudes, valg- või ühtkanalite süsteem. Sügavallapannul pidamisvisi puhul on PVT piisavas koguses allapanna, skreep- või mobilised seadmend. Olemasolevates vabapidamisega lautades on PVT ka osaline restpöörand sõõtmis-puhkealal ja liikumiskäikudes ning paiskanalite süsteem. Olemasolevates vabapidamisega lautades on tingimisi PVT osaline restpöörand sõõtmis-puhkealal ning liikumiskäikudes ning pööranda alla rajatud sõnnikkelder (hoidla) ning sõnniku eemaldamine sõõtmis-puhkealalt mobilisedet seadmetega (v.a. sügavallapannul pidamine). Uutele vabapidamisega lautadele ei ole sõnnikkukelder lauda all PVT.

PVT sõnniku eemaldamisel lõaspidamisega lautast on lattkraapkonveier koos sõnnikupressuriga või skreerseerade koos sõnnikupressuriga. Olemasolevates vabapidamisega lautades on tingimisi PVT kettkraapkonveier koos kalkonveieriga ja sõnniku eemaldamine mobilisedet seadmetega. Uutele (projekteeritivatele) ja/või renoveeritavatele vabapidamisega lautadele ei ole sõnniku eemaldamine kettkaap- ja kalkonveiersüsteemega või mobilisedet seadmetega PVT.

Sõnniku ladustamine. PVT on piisava mahutavusega sõnnikuhoidlola olemasolu. Veeseaduse § 261 kohaselt tohib põllumajandusmaa ühe hektari kohta pidada aasta keskmisena kuni kahele loomühikule vastavalt hulgalloomi. Rohkem kui kahele loomühikule vastavalt hulgalloomi ühe hektari kohta tohib pidada nõuetekohase mahutavusega sõnnikuhoidlola või sõnniku- ning virtsaühenduskaupa või sõnniku laotamislepingu või ostu-müügilepingu olemasolu korral. Tulenevalt üksikasettele nüüdet peab sõnnikuhoidlola mahutama vähemalt 8 kuu sõnniku. Sügavallapannutehnoloogia lautade juuret ei ole sõnnikuhoidliku rajamine kohustuslik sellel olulisel osal, et sõnnikuhoidlola mahutab 8 kuu sõnnikukogus. PVT tahesõnniku säilitamiseks on betoneeritud plaats või betoneeritud betooni veekogude kallastele laotamisel. Vältimaks pinna mullas saastumisest PVT on tuule ajal, mis tagab nende heaolu ning liigiamuse käitumise võimaluse. PVT mahutab 8 kuu sõnnikukogus.

PVT mahutab sõnniku kogusest: ühe hektari heaolu ja liigiamuse tagamisel. PVT mahutab sõnnikukogusest, mis on olemasolu korral. Mahutamisel vabapidamisega laudast on sõnniku eemaldamine kettkraapkonveier koos kaldkonveieriga ja sõnniku eemaldamine mobiilsete seadmetega (projekteeritavate) ja/või renoveeritavate lõaspidamisega lautades on sõnniku eemaldamine kettkraapkonveier koos kaldkonveieriga ja sõnniku eemaldamine mobiilsete seadmetega (projekteeritavate) ja/või renoveeritavate lõaspidamisega lautades on.

Sõnniku töötlemine. Kõik sõnniku töötlemise viisid, mis vähendavad potentsiaalsete saasteaineet emissiooni on PVT. Peamiste sõnniku töötlemise viisidena tulevad arvesse anaeroobne kääritamine biogaasi reaktoris, kompostimine, separeerimine, hapestamine jms meetodid.

6. Sissejuhatus

Toodangu produtseerimisel (sünteesimisel) ei kasuta veised sõötades sisalduvaid toitaineid täielikult, jääkained väljutatakse organismist rooja ja uruina (joonis 1).

![Diagram showing nutrient flow and emission](attachment:diagram.png)

Joonis 1. Lehma (8000 kg piima aastas, valgutoodang 271 kg,) lämmastikutartse aastas, selle väljutamine piimaga, ladestumine kehasse ja embröosse, eritumine urini ja roojaga ning emissioon vabapidamisega laudas (aastaringne laudapidamine) ning jäiga kattega (betoon või telkkatus) vedelsõnnikuhoidlast

Intensiivse veisekasvatus ja keskkonna vahelised vastuolud avalduvad selgepiiriilisemalt sõnnikumajanduse korralduse kaudu. Intensiivne ja samas ka keskkonnasõbralik veisekasvatus lähutub heast põllumajandustavast
sõltudes söötmisstrateegiast, mille kaudu on võimalik mõjutada produtseeritava sõnniku kogust ja toiteelementide sisaldust; sõnniku kättelemise (eemaldamine loomapidamishoonest), ladustamise- (sõnnikuhoiulõid), töötlemise- (kääritamine biogaasireaktoris jms.) ja laotamise tehnoloogiat. Peale ülalnimetatut on teiseks probleemseks saate liikiks lenduvad lämmastikühendid ning ka intensiivse tootmise tulemusena tekkivad jääted (siro pakkematerjalid jms.), reovesi, müra- ja lõhnasaaste. Samuti tuleb tähelepanu pöörata ökonoomsele keskkonnaressursside, eeskätt energia ja vee tarbimisele.

Intensiivses veisekasvatuses toimuvad põhilised protsessid ja tegevused iseloomustab järgnev blokskeem (joonis2).

Joonis 2. Intensiivses veisekasvatuses toimuvad põhilised protsessid ja tegevused

6.1. Veised tõugude, vanuse- ning toodangurühmade lõikes

Toodangu alusel jagunevad Eestis kasvatatavad veised kolme rühma:

a) Piimatõud. Piima tootmise eesmärgil kasvatatavad loomad moodustavad Eestis veiste koguhulgast suurema osa. Tõugudest on esindatud eesti holstein-friis (EHF), eesti punane (EPK) ja vähesel määral ka eesti maatõug (EK).

c) *Ristandid.* Ristandveiseid kasvatatakse peamiselt liha saamise eesmärgil. Üheks enamlevinud võimaluseks ristandjärglase kasvatamiseks on madala toodanguga piimalehma (viimasel laktatsioonil enne karjast praakmist) seemendamine lihatõugu pulli spermaga.

Vanuse ja kasutamise otstarbe alusel alustavad veised järgmistesse rühmadesse:

a) *Vasikad* (0…6 kuud).

b) *Lehmmullikad* e. *lehnikud* (6 kuud kuni poegimine või realiseerimine)

c) *Pullmullikad* e. *pullikud* (6 kuud kuni realiseerimine)

d) *Lüpsilehmad*

e) *Ammlehmad*

f) *Sugupullid*

Eesti karjade struktuurist lähtudes tulevad keskkonnakompleksloa kohuslastena arvesse eelkõige ettevõtted, kus peetakse lüpsilehmni koos vastava arvu noorloomadega.

6.2. Veiste pidamisviisid

Joonis 3. Puhkelatritega lauda põhimõtteline skeem

- Vabapidamise erivormiks on sügavallapanul pidamine. Loomade puhke- ja lamamisala (puhkelatrid tavaliselt puuduvad) puhastamine sönnikust toimub vastavalt vajadusele üks või kaks korda aastas. (Noorkarja pidamisel rakendatakse sageli ka sügavallapanul pidamise erivormi, kus sönnik eemaldatakse puhke- lamamisalalt 1-2 korda kuus.) Söötmisala puhasaktse sönnikust vähemalt 1 kord päevas. Loomade puhtuse ja heaolu tagamiseks laotatakse sönnikukihile iga päev piisavas koguses allapanu. Kuna allapanu vajadus on suur, siis saadakse sügavallapanul pidamisega laudadest tahesönnikut, sõltuvalt allapanu kogusest sügavallapanusönnikut.

Joonis 4. Lõasapidamisega lauda põhimõtteline skeem

Lauda ja loomakoha maksumus eri pidamisviiside lõikes. Lauda maksumus sõltub paljudest faktoritest. Eelkõige konstruktsioonist (soojustatud vs soojustamata laut), pidamisviisist (lõas- vs. vabapidamine), sõnnikukoristus-, läpi- ja sõõtmistehnoloogia valikust jne. Loomakoha maksumus oleneb eelkõige loomade arvust laudas. Kuna suuri lõasapidamistehnoloogiai laudu ei ole Eestisse viimastel aastatel ehitatud, siis on tabelis 1 toodud orienteeruv lauda ja loomakoha maksumus erinevate konstruktsioonide ja looma kohtade arvu lõikes vabapidamistehnoloogia farmides tuginedes 2013. a. hindadele.

<table>
<thead>
<tr>
<th>Loomakohtade arv</th>
<th>Üldmaksumus, tuh €</th>
<th>Loomakoha maksumus, €</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Soojustatud laut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>280</td>
<td>410</td>
</tr>
<tr>
<td>100</td>
<td>360</td>
<td>540</td>
</tr>
<tr>
<td>300</td>
<td>940</td>
<td>1500</td>
</tr>
<tr>
<td>500</td>
<td>1342</td>
<td>2200</td>
</tr>
<tr>
<td>1000</td>
<td>2200</td>
<td>4000</td>
</tr>
<tr>
<td>Soojustamata laut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>220</td>
<td>280</td>
</tr>
<tr>
<td>100</td>
<td>270</td>
<td>360</td>
</tr>
<tr>
<td>300</td>
<td>670</td>
<td>940</td>
</tr>
<tr>
<td>500</td>
<td>900</td>
<td>1300</td>
</tr>
<tr>
<td>1000</td>
<td>1300</td>
<td>2200</td>
</tr>
</tbody>
</table>

6.3. Sõnnikuhooldus

Sõnnikuhooldla tüübi ja mahutavuse kalkuleerimisel lähtutakse (Kaasik, 2013):
• loomade liigist, vanusest ja avrust;
• hoiustamisperioodi pikkusest;
• pidamistehnoloogiast;
• allapanu liigist ja kogusest;
• laudast (vajadusel ka lauda territooriumilt) kogutava tehnoloogilise- ja reovee hulgast;
• silomahla hoiustamiskohast, kui see suunatakse vedelsõnnikuhoideklassse, lisandub 10 liitrit 1m³ silohoidla mahu kohta.

Joonis 5. Betoonist sõnnikuplaad koos virtsa väljalavamist takistava kaitserandiga.

Tahesõnnikuhoideklad otstarbekamaks kasutamiseks (suurem mahutavus) ümbritsetakse ülalnimetatud betoonist sõnnikuplaad vähemalt kolmest küljest seintega (joonis 6). Seinte kõrgus on sõltuvalt konstruktsioonilisest lahendusest ja materialist 1,0…1,8 m, millele vastab keskmise tahesõnniku ladustamiskõrgus 1,5…2,0 m.

Joonis 7. Laguun-tüüpi betoonematerialidest poolvedel- ja vedelsõnnikuhoidla.

Laguun-tüüpi hoidla maksumus sõltub ehitamiseks kasutatavast materjalist, hoidla mahatavusest ning konstruktsioonist (avatud pinnaga vs. kaetud hoidla). Suurte (12 000 m³ ja suuremad) avatud pinnakihiga hoidlate orienteeruval maksumus on keskmiselt 15 €/m³. Kaetud pinnakihiga (varikatus, ujuvkate) hoidlad jäävad mahatavusest oluliselt väiksemaks (kuni 2000 m³), seeõttu kujuneb ka nende maksumus oluliselt suuremaks – 35 €/m³.

Uutele (projekteeritavatele) ja/või renoveeritavatele loomakasvatusehoonetele laguuntüüpi hoidlate rajamine ei ole saasteainete emissiooni ning potentsiaalse põhjavee reostumise aspektist PVT.

Vedelsõnniku- või virtsaht hoidla võib olla ehitatud ka maa peale või osaliselt süvendisse (joonis 8). Üldjuhul on selline hoidla ringja põhiplaaniga (rõngasmahutid), väiksemad hoidlad võivad olla ka nelinurksed. Hoidla põhi valatakse betoonist. Seinte ehituseks kasutatakse monoliitset või monteeritavat raudbetooni, teraskonstruktsioone või puitu.

Virtsa- või vedelsõnnikuhoidlate täitmine toimub isevooselt või pumba abil enamasti hoidla põhjast.

Lekkekindluse pidevaks kontrollimiseks paigaldatakse vedelsõnnikuhoidla põhja alla vettpidav materjal (kile, hüdrobutüül vms). Piki hoidla perimeetril paigaldatakse drenažitoru. Kui hoidla läbibõö on üle 25 m, siis on soovitav ette näha kaks kontrollkaevu.

Betoonematerialidest avatud pinnaga, suure mahatavusega (5000 m³ ja rohkem) hoidla hinnaks kujuneb keskmiselt 25 €/m³. Varikatusega (jääk kate, telkkatus vms.) betoonematerialidest hoidla maht on tulenevalt katuskonstruktsioonide ehitamise komplektseeritusest väiksem (600 m³ ja rohkem). Varikatus olemasolul suurendab ka hoidla maksust, keskmiselt 45 €/m³. Teraskonstruktsioonidest avatud pinnaga sõnnikuhoidlal saab võrreldes betoonematerialidest hoidlaga ehitada kõrgema, sellest tulenevalt on sarnase põhjapindala hoidla mahatavus suurem (8000 m³ ja rohkem), kuid tulenevalt materjali maksumusest kujuneb hoidla siiski kallimaks, keskmiselt 30 €/m³. Varikatusega teraskonstruktsioonidest hoidla (mahatavus 2000 m³), hinnaks kujuneb orienteeruvalt 48 €/m³. Varikatus rajamine (telkkatus, jääk kate, PVC kate) olemasolevale laguun-tüüpi-, betoon- või teraselementidest hoidlale on tehniliselt keerukas (Eestis vastav kogemus puudub). Betoonkattega hoidla on projekteeritud ja rajatud Eesti Maaülikooli Märja katsefarmis.

7. Kulu- ja heitetasemed veiste intensiivkasvatuses

7.1. Toorainete erikulu

7.1.1. Söödaku

Veise füsioloogiline toitefaktorite vajadus (söödavajadus) aastas/perioodis sõltub looma vanusest, geneetilisest toodangutasemest, füsioloogilisest seisundist (laktatsioonifás, tiinus), kehamassist , kehamassi juurdekasvust jne. Reaalse sõttade kulu füsioloogilise toitefaktorite tarbe katmiseks oleneb sõttade kvaliteedist (toitefaktori kontsentratsioon sõõdas, seedevus, sõõdavus, maitsvus jms) ning sõõdaratsiooni tasakaalustatesusest. Tasakaalustamata sõõdaratsioon ja ebakvaliteetsed sõõdad suurendavad sõõdaku, keskkonda erituvate jääkainete (potentsiaalsete saasteainete) kogust ning võivad põhjustada probleeme loomade tervisega. Tabelis 2 on esitatud veiste keskmine sõõdavajadus vanuse- ja toodangurühmade lõikes aastas/perioodis lähtuvalt kuivaine, lämmastiku ja fosfori kogused.

Tabel 2. Toitefaktorite keskmine vajadus aastas/perioodis toodangu- ja vanuserühmade lõikes

<table>
<thead>
<tr>
<th>Vanuse-, toodangurühm</th>
<th>Kuivaine</th>
<th>Energia MJ/kg k.a.</th>
<th>Proteiin %</th>
<th>Lämmastik kg</th>
<th>Fosfor kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piimalehmad (toodang 8000 kg)</td>
<td>7500</td>
<td>11,0</td>
<td>15,0</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>Vasikad (0...6 kuud)</td>
<td>800</td>
<td>12,0</td>
<td>16,0</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>Lehmmullikad (6 kuud kuni poegimine)</td>
<td>3100</td>
<td>10,5</td>
<td>14,5</td>
<td>67</td>
<td>13</td>
</tr>
<tr>
<td>Pullmullikad (6 kuud kuni realiseerimine)</td>
<td>3000</td>
<td>10,5</td>
<td>14,0</td>
<td>67</td>
<td>13</td>
</tr>
</tbody>
</table>

Sõttade kogus (ratsiooni mass), mis katab looma füsioloogilise toitefaktorite tarbe on väga varieeruv. See sõltub eelkõige ratsioonis kasutatavate sõttade liigilisest koosseisust ning kuivainesisaldusest. Mida madalam on ratsiooni kuivainesisaldus, seda suuremaks kujuneb ratsiooni kogukal.

7.1.2. Veekulu

Farmi üldine veevajadus jaguneb tinglikult kahte osa: loomade joogivesi ja veekulu farmi tehnoloogilisteks ning olmevajadusteks (udara, liipsiseadmete, inventari, hoonete jm pesemine ning veekulu duššiurumides, tualettides jms). Viimane moodustab põhilise osa farmis tekkivast reoveest.

Veised rahuldavad oma igapäevase veetarbe kolmem allikast: joogiveega, mis moodustab keskmiselt 83% kogu vajaminevast veest, sõõdaga saadava- ning vähesel määral organismis ainevahetuse käigus tekkinud veega. Orienteeruvad joogivee tarbimise määrad on toodud tabelis 3.
Tabel 3. Veiste orienteeruv joogivee tarbimine olenevalt keskkonna temperatuurist (kg/p).

<table>
<thead>
<tr>
<th>Vanuse-astume, toodangurühm/ Kehamass, kg</th>
<th>Piimatooodang</th>
<th>Temperatuur °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>< 4,5</td>
</tr>
<tr>
<td>Lüpsilehmad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>635</td>
<td>36</td>
<td>102</td>
</tr>
<tr>
<td>635</td>
<td>45</td>
<td>121</td>
</tr>
<tr>
<td>Noorloomad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>180</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>365</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>545</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>Kinnislehmad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>725</td>
<td>39</td>
<td>48</td>
</tr>
</tbody>
</table>

Päevas tarbitava vee kogust mõjutavad järgmised faktorid:

- bioloogiline ja füsioloogiline seisund (laktatsioonifaas) ning tervis;
- kehamass, tõug;
- söödaratsiooni kuivaine sisaldus ja -söömus;
- piimatooodang;
- ümbriskeva keskkonna temperatuur, niiskus, õhu liikumise kiirus, sademed jm;
- söödaratsiooni keedusoola, sooja ja proteiini sisaldus ning koresööda osatähtsus.

Võrrand 1. Lüpsilehma veetarve, kg/p = 15,99 + [(1,58 ± 0,271) x (kuivaine söömuse, kg/p)] + [(0,90 ± 0,157) x (piimatooodang, kg/p)] + [(0,05 ± 0,023) x (naatriumi söömus, g/p)] + [(1,20 ± 0,106) x (minimaalne päevane temperatuur, °C)]

Robotlüps:

- Nisasid puhastatakse pöörlate harjade, puhustusrullide või nende kombinatsiooniga
- Nisasid puhastatakse nisakannu abil suruõhu ja vee seguga
- Nisasid puhastatakse spetsiaalsele puhustuskannu abil suruõhu ja vee seguga

Tehnoloogiline veekulu.
Lüpsiplats:
- Udaraid puhastatakse dušist suunata veejoaga
- Udaraid puhastatakse kuiva või niiske paberist ühekorduse kasutusega salvrätiga
- Udaraid puhastatakse vette kastetud ja kuivaks väänatud individuaalse udarapesulapiga

Torusselüpsisüsteem:
- Udaraid puhastatakse vette kastetud ja kuivaks väänatud udarapesulappidega
- Udaraid puhastatakse vette kastetud ja kuivaks väänatud individuaalse udarapesulapiga
- Udaraid puhastatakse kuiva või niiske paberist ühekorduse kasutusega salvrätiga

Veekulu on suurim udarate puhastamisel dušivoolikust suunata veejoaga. Udarate puhastamisel individuaalsete udarapesulappidega lisandub veekulule udarapesulappide pesemiseks kuluv vesi. Keskmiselt kulub ühe lehma kohta päevas udara puhastamisel veejoaga 15 liitrit ning udara puhastamisel kuiva ühekordse salvrätiga 3 liitrit vett.

Tabelis 4 toodud minimaalsed tehnilised vee kogused lüpsiviiside lõikes. Farmides kasutatav vesi peab olema kvaliteetne s.o. vastama samadele normidele, mis on kehtestatud inimeste poolt tarbitava veele. Veekasutus farmides vik ei erineda kordades.

Lüpsilehma päevane veevajadus on vahemikus 180-230 liitrit. Keskmiselt kulub ca kaks kolmandikku farmis vajaminevast veest loomade jootmiseks ja ülejäänud kolmandik energiatehniliste tehnoloogiliste ehitisteks.

Tabel 4. Tehnilised vee vajadus sõltuvalt lüpsiviisist

<table>
<thead>
<tr>
<th>Lüpsiviis</th>
<th>Vee kogus lehma kohta päevas, l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kannulüps</td>
<td>7</td>
</tr>
<tr>
<td>Torusselüps</td>
<td>14</td>
</tr>
<tr>
<td>Lüpsiplats</td>
<td>17</td>
</tr>
<tr>
<td>Lüpsirobot</td>
<td>13-15*</td>
</tr>
</tbody>
</table>

* Vee tarve robotlüpsi keskmisena ühe lehma lüpsikorrana kohta on 5,6 liitrit. Lehmad külastavad robotit keskmiselt 2,4-2,7 korda ööpäevas.

Lüpsiprotsessis kasutatavat tehnilisi veevajadust vett ei ole võimalik lõpmuslikult kokku hoida, sest peale lüpsikorda tuleb lüpsiinventar pesta. Seda tuleb teha olenevalt lüpsikordude arvust kaks kuni kolm korda ööpäevas. Vee kasutamise efektiivsusest on võimalik tõsta udara ettevalmistamisel lüpsiks ning lüpsiplatsi ja lehmade ootealaide pesemisel. Lüpsisüsteemi- ja inventari pesimine on harilikult automaatseeritud protsess. Seejuures on veekasutus reguleeritud ja häälestatud seadmete tootjafirmale poolt. Võimalus veekasutuse eelduseks on lauda (farmi) veekulu täpne mõõtmine (veemõõturid).

7.1.3. **Energiakulu**

Energiakulu registreerimine veiselautades on kompliteeritud tulenevalt tarbimise ööpäevasest, sesoonsest ja kliima- ja energiakandja liigist ning lõpp-tulemus väljendatakse kilovatttundides (kWh) loomakoha kohta.

Energiatarve sõltub põhiliselt pidamistehnilisest, välisenergiakandjast ja tootmistehnilisest. See võib kõikudada väga laiades piirides.

Energiakulu alusel jagunevad veiste pidamisviisid kaheks:
- vabapidamine soojustamata või osaliselt soojustatud laudas;
- lõaspidamine.

Üldjuhul jaotatakse tehnilised prosessid energiakasutuse järgi järgmisliselt:
- sööda ettevalmistamine ja söömine;
- lüspine;
- sooj vee ettevalmistamine ning teenindus- ja olmeruumide kütmine;
• valgustus;
• ventilatsioon;
• sönniku eemaldamine.

Elektrienergia. Elektrienergia on üks kallimaid energia liike, kuid tehnoloogilisteks vajadusteks kõige lihtsamini kasutatav. Ilma elektrit kasutamata on paljud tehnoloogilised protsessid võimalikuks realiseerida. Elektrienergia kasutamist lauda (k.a. olmeruumide) küttedes ja sooju vee saamises korral võimaluse korral vältida või kasutada seda minimaalselt. Elektrienergia alternatiiv on gaasikatelde kasutamine.

Tabelis 5 on toodud orienteeruv elektrienergia tarbimine 300 loomakohaga laudas, kus sönnik eemaldatakse kraaptransportööriga, sööt jagatakse liikurmasinaga ning lehmi lüpsitakse lüpsiplatsil.

<table>
<thead>
<tr>
<th>Tootmisprotsess</th>
<th>Lõaspidamine kWh/loomakoht</th>
<th>Külmlaut ja vabapidamine kWh/loomakoht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sõoda ettevalmistamine ja söötmine</td>
<td>17,0 - 23,0</td>
<td>1,0 - 3,0</td>
</tr>
<tr>
<td>Lüpsmine</td>
<td>110,0 - 135,0</td>
<td>190,0 - 210,0</td>
</tr>
<tr>
<td>Sõooja vee ettevalmistamine ja külmine</td>
<td>130,0 - 180,0</td>
<td>50,0 - 80,0</td>
</tr>
<tr>
<td>Valgustus</td>
<td>70,0 - 90,0</td>
<td>19,0 - 22,0</td>
</tr>
<tr>
<td>Sõnniku eemaldamine</td>
<td>105,0 - 135,0</td>
<td>7,0 - 11,0</td>
</tr>
<tr>
<td>Kokku</td>
<td>432,0 - 563,0</td>
<td>267,0 - 326,0</td>
</tr>
</tbody>
</table>

Soojusenergia. Tavapäraselt laudaruumi ei köeta, piisab veiste omasoojusest. Soojusenergiat vajatakse teenindus- ja olmeruumide kütteks ning soooja vee valmistamiseks.

Sooja vett kasutatakse:
• tehnoloogilisteks vajadusteks (lüpsiseadmete pesu, jne);
• olmevajadusteks (käte pesu, dušš).

Soojusenergiat võidakse saada nii elektrienergia abil, kui ka kütustest. Viimane oleks majanduslikult otstarbekam, kuid operatiivseks väikesemaluses soojavee vajaduse rahuldamiseks sobib elektriboiler.

<table>
<thead>
<tr>
<th>Tehnoloogiline protsess</th>
<th>Kg/aasta/loomakoht</th>
<th>kWh/aasta/loomakoht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sõoda jagamine</td>
<td>4,0 - 8,0</td>
<td>48,0 - 96,0</td>
</tr>
<tr>
<td>Sõnniku eemaldamine</td>
<td>6,0 - 10,0</td>
<td>72,0 - 120,0</td>
</tr>
<tr>
<td>Kokku</td>
<td>10,0 - 18,0</td>
<td>120,0 - 216,0</td>
</tr>
</tbody>
</table>

1 Diiselkütuse kutteväärtuseks on ca 12,0 kWh/kg

7.2. Heitekogused

21
käitlemise tehnoloogia korral jõuab taimeedeni kuni 90 % sönnikus sisalduvast lämmastikust, puuduliku tehnoloogia korral aga vähem kui 50 %.

Gaasiliste ühendite lisandumist atmosfääri loetakse üheks peamiseks kliima soojenemist põhjustavaks teguriks. Probleemseid ühendeid on mitmeid, vahetult loomakasvatusega seonduvad süsihappegaasi kõrval ka metaan (CH\textsubscript{4}) ja lämmastikoksidiid (põhiliselt N\textsubscript{2}O). Kliima soojenemisele avaldab enam mõju süsihappegaas, kuna selle kontsentraatsioon on atmosfääris suurim, samuti lendub seda võrreldes teiste gaasidega nii looduslikult kui ka inimtegevuse tulemuseks. Loomakasvatusega seonduv süsihappegaasi emissioon on maailmamaastasabis siiski suhteliselt tagasihoidlik. Arvutuste kohasel pärineb keskmiselt 9 % antropogeensest süsihappegaasi emissioonist kas otseselt (respiratsioon, sönniku käärimine) või kaudselt (fossiilsete põletiste, transpordi, jne) looma- ja linnukasvatustes.

Oluliselt kriitilisem on olukord metaani ja lämmastikoksidiidega (peamiselt dilämastikoksidiid, N\textsubscript{2}O). Metaani tekib rohkesti loomade, eriti mäletsejaliste seedeprotsessides ning samuti sönniku anaeroobsel käärimisel. Aastastest inimtegelisest metaani emissioonist pärineb looma- ja linnukasvatusest ca 35…40 %. Lämmandiistikoksidiidega tekib sönniku aeroolsel käärimisel. Inimtegevusest lämmastikoksidiidiga emissioonis on looma- ja linnukasvatuse osatähtsus ca 65 %. Kogu inimtegelisest kasvuhoonegaaside emissioonis (40,3 mld t süsihappegaasi ekv; FAO, 2006) moodustab lendumine looma- ja linnukasvatusest ca 18 % (7,1 mld t süsihappegaasi ekv). Sellest omakorda ca 2/3 lendub metaani ja lämmastikoksidiidena.

Ammoniaaki kui ühte peamist loomakasvatusest pärinevat saasteainet ei loeta kasvuhoonegaasiks, kuna see on atmosfääris suhteliselt ebaharilik, kõik vaheel ja sõnniku anaeroobsel käärimisel. Ammoniaak tekib sõnniku proteinide, esikäikiristuri karbamiidi aeroolsel lagunemisel. Ammoniaak on ohi- ja keskmilisestast, mis põhjustab veerookude eutrofeerumist (lämmandiituga üheküllastamine), muldade hapestumist ja lõhnaastast. 2004. aastal kujunes inimtegelises ammoniak emissiooniks ca 47 milj tonni, millest looma- ja linnukasvatusest moodustab õhuräämuse osa, ca 68 %.

Eesti looma- ja linnukasvatusest lenduvate saasteainete osakaal maailma maastabas on tühine.

Eestis on viimasel kümnendil loomade põllumajanduslikke toitrakistusse osas toimunud suured muutused. Piimakarjakasvutes on toimunud kiire üleminek lõaspidamiselt vabapidamise, tahesõnniku tehnoloogialt vedelsõnniku tehnoloogia. Sellest tulenevalt on muutunud ka sönniku ladustamise, käitlemise ja laotamise tehnoloogiad.

Loomakasvatuses s.h. veisekasvatusest tekib ka müra- ja lõhnaheidet, samuti mitmesuguseid jäätmeid (olmejäätmed, ohtlikud jäätmed jms.).

7.2.1. Veiseööndiku üldiseloolomustus

Sönniku on looma organismist väljutatud uriini ja rooja ning sellele laudas lisandunud sõõdajääkide, allaparu ja tehnoloogilise vee segu. Sõltuvalt piimakarjakasvutes on toimunud kiire üleminek lõaspidamiselt vabapidamisele, tahesõnniku tehnoloogialt vedelsõnniku tehnoloogiale. Sellest tulenevalt on muutunud ka sönniku ladustamise, käitlemise ja laotamise tehnoloogiad. Loomakasvatuses s.h. veisekasvatusest tekib ka müra- ja lõhnaheidet, samuti mitmesuguseid jääteid (olmejäätmed, ohtlikud jäätmed jms.).

Tabel 7. Erinevate sönnikutüüpide omadused

<table>
<thead>
<tr>
<th>Õmadus</th>
<th>Sönniku tüüp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vedelsõnnik (virts)</td>
<td></td>
</tr>
<tr>
<td>Poolvedel sönnik</td>
<td>< 8</td>
</tr>
<tr>
<td>Tahesõnnik</td>
<td>8…19,9</td>
</tr>
<tr>
<td>Säilituseskkeskond</td>
<td>20…25</td>
</tr>
<tr>
<td>Mahumass, kg/m³</td>
<td>> 25</td>
</tr>
<tr>
<td>pH</td>
<td>8…9</td>
</tr>
<tr>
<td>apariisi sisaldus, %</td>
<td>8…9</td>
</tr>
<tr>
<td>Kääritusviis</td>
<td>600…750</td>
</tr>
<tr>
<td>Säilituseskkeskond</td>
<td>750…950</td>
</tr>
<tr>
<td>Keemiset kuivaine</td>
<td>1000</td>
</tr>
<tr>
<td>Mahumass, kg/m³</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Õmadus</th>
<th>Sönniku tüüp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vedelsõnnik (virts)</td>
<td></td>
</tr>
<tr>
<td>Poolvedel sönnik</td>
<td></td>
</tr>
<tr>
<td>Tahesõnnik</td>
<td></td>
</tr>
<tr>
<td>Säilituseskkeskond</td>
<td></td>
</tr>
<tr>
<td>Mahumass, kg/m³</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 8. Sõnnikutüüpide eelised ja puudused

<table>
<thead>
<tr>
<th>Sõnnikutüüp</th>
<th>Vedelsõnnik</th>
<th>Poolvedelsõnnik</th>
<th>Tahesõnnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Pumbatav;</td>
<td>Vöib kasutada piiratud koguses allapanu.</td>
<td>Võimalik kasutada suuri allapanukoguseid; komposteerununa sisaldab vähe patogeenseid baktereid patogeene ja idanemisvöömelisi umbrohu seemmeid; parandab mulla struktuuri, saab virnastada; ebaameeldiv lõhn puudub.</td>
</tr>
<tr>
<td></td>
<td>ühtlane mass peale segamist; õige tehnoloogia korral kõrge lämmastikusisaldus; lihtne doseerida ja ühtlaselt laotada; vöib laotada kasvavatele taimedele; lihtne määrala toitainete keskmist sisaldust; vajab ainult ühte tüüpi laoturit.</td>
<td>Ebaühtlane produkt; suured hoiustamiskulud; raske doseerida ja ühtlaselt laotada; vajab kahte tüüpi laoturit; madal lämmastikusisaldus; raske määrala toitainete keskmist sisaldust; patogeensed bakterid ja patogeendid säilitavad eluvõime pikaks ajaks; umbrohuseemnete idanemisvööme säälib; ebaameeldiv lõhn.</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Ei saa kasutada allapanu; keskonnaohutlikke gaaside teke; patogeensed bakterid ja patogeendid säilitavad eluvõime pikaks ajaks; umbrohuseemnete idanemisvööme säälib; ebaameeldiv lõhn.</td>
<td>Ebaühtlane produkt; raske doseerida ja ühtlaselt laotada; raske määrala toitainete keskmist sisaldust; vajab eraldi hoidlaid tahesõnniku ja virtsa ladustamiseks; vajab kahte tüüpi laoturit; suured lämmastikukaod.</td>
<td></td>
</tr>
</tbody>
</table>

7.2.2. Saasteainete eritumine loomapidamishoones

Saasteainete emissioon loomapidamishoones on reglementeeritud keskkonnaministri määrusega „Looma- ja linnukasvatusest välisõhku eralduvate saasteainete heitkoguste määramismeetodid“ (RTL, 2008,99,1390)

Väljaheitude kogus ja toiteelementide sisaldus. Väljaheitede kogus määramine looma kohta praktilises tootmises kaalumise teel on komplitseeritud, kui mitte võimalik. See pärast arvutatakse väljaheitede kogus ja keemiline koostis sageli sõltuvalt erirändest, mis lähtuvad söödete kogusest ja toiteelementide sisaldusest ning toodangu vastavatest näitajatest. Looma organismist erituvate väljaheitede kogus ja toiteelementide sisaldus sõltub looma toitfaktorite (sööda) tarbes t.k. kehamassist, füsioloogilisest seisundist (lüpsilehmade puhul laktatiinioofaasist) ja toodangutasest, samuti sõödaratsooni struktuurist (sööduna valik) ning sööduna toiteelementide sisaldusest (sööduna kvaliteet). Olulist tähtsust omab ka sõödaratsooni tasakaalustamine erinevate toiteelementide lõikes, kuna looma füsioloogilist tarvet ületavad toitefaktorid eemaldatakse organismist rooja ning uriniga. Looma organismist erituvat rooja kogust mõjutab suurel määral sõõdunud sõõdaratsooni kuivaine (organiline aine) seaduvus. Mida parem on see näitaja, seda rohkem toitefaktoreid seedub ning sellevõrra väiksem on ka erituva rooja kogus (vorrann 2).

![Vorrann 2. Roe, kg = söõda kuivaine, kg x 1. \[\text{organiline aine seedekoeffitsient, \%} \times \text{sõnniku kuivaine, \%} \times 100 \div 100\]

Suur osa jääkprodukte ning teisi mittevajalikke ühendeid eemaldatakse organismist uriniga. Näiteks lämmastikust eritub märkimisväärne osa just urini karbamiidiina. Arvutuste lihtsustamiseks (vorrann 3) on erituva urini kogus viidud sõltuvuse vastava perioodi rooja kogusega (tabel 9).

Vorrann 3. Uruin, kg = roe, kg / k

Tabel 9. Kordaja k vanuse- ja toodangurühmade lõikes
Vanuse-, toodangurühm	Kordaja k
Piimalehmad | 1,85
Ammlehmad | 2,0
Vasikad (0…6 kuud) | 1,5
Lehmnullikad (6 kuud kuni poegimine) | 2,0
Pullnullikad (6 kuud kuni realiseerimine) | 2,0

Väljaheidetega eritunud lämmastiku, fosfori ja kaaliumi kogus leitakse sööduga saadud ning looma organismi ja embrüosse ladestunud ning toodangu väljutatud toiteelementide vahena (värvand 4).

Tabelis 10 on esitatud lämmastiku, fosfori ja kaaliumi keskmine sisaldus piimas, kehamassi juurdekasvus ning embrüos.

Tabel 10. Lämmastiku, fosfori ja kaaliumi sisaldus piimas, kehamassi juurdekasvus ning embrüos

<table>
<thead>
<tr>
<th>Looma liik, vanuserühm</th>
<th>Lämmastik g/kg</th>
<th>Fosfor g/kg</th>
<th>Kaalium g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piimalehmad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juurdekasv</td>
<td>25,6</td>
<td>8,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Embrüo</td>
<td>29,6</td>
<td>8,0</td>
<td>2,1</td>
</tr>
<tr>
<td>Noorvedad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juurdekasv</td>
<td>28,5</td>
<td>7,3</td>
<td>2,3</td>
</tr>
<tr>
<td>Embrüo</td>
<td>29,6</td>
<td>8,0</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Tabel 11. Summaarne väljaheidete produktsoon looma kohta ja selle kuivaine, lämmastiku, fosfori ning kaaliumi sisaldus vanuse- ja toodangurühmade lõikes

Looma liik, vanuserühm	Väljaheited	Toiteelementide sisaldus					
	t	Lämmastik	Fosfor	Kaalium			
	kg/t	kg	kg/t	kg	kg		
Lehmad, 8725 kg	22,9	5,9	134,0	1,3	30,1	4,4	101,0
Ammlehmad	8,3	8,7	72,4	0,8	6,9	8,7	72,5
Lehvasikad (0 - 6 kuud)	2,6	6,7	17,1	0,8	2,1	6,7	17,1
Pullvasikad (0 - 6 kuud)	2,4	5,9	13,7	0,6	1,3	3,8	8,9
Lehmmnullikad (6 kuud kuni poegimine)	11,4	5,1	58,1	1,0	11,1	3,7	48,7
Pullnullikad (6 kuud kuni realiseerimine)	6,7	6,2	41,3	1,0	6,8	3,7	24,8

Pidamisviis mõjutab eritatavat väljaheidete kogust ja keemilist koostist minimaalselt.

Saaestaineid keskkonda sattumise võimalused loomapidamishoonedes. Lekkekindlate laudakonstruktsioonide olemasolul (põrandad ja sõnnikukäigud) on fosfori-, kaaliumi- ja lahustuvate lämmastikühendite leostumine pinna- ja põhjavette välistatud. Ammoniaaklämmastiku lendumine atmosfääri algas aga koheselt pärast väljaheidete eritumist. Tegurid, mis mõjutavad ammoniaagi lendumist laudas, on mitmekesised:

- Kliima s.t. välis- ja sisetemperatuur. Lauda sisetemperatuuri tõustes suureneb ka sõnniku temperatuur, mis põhjustab ammoniaagi emissiooni kasvu. Sageli kaasneb sisetemperatuuri tõusuga õhuvahetuse kiiremamine laudas, mis suurendab ammoniaagi lendumist veelgi.

24
Söödaratsiooni koostis ja selle kasutamise efektiivsus toodangu sünteesil. Proteiini seeprotsessi üheks vaheproduktiks on ammoniaak, mille liig eemaldatakse organismist kiiresti karbamiidina. Kõrgema toodangutasemega (intensiivsema ainevahetusega) loomad vajavad oma toitefaktorite tarbe katmiseks rohkem ja kontsentreeritumat sööta, seejuures toitefaktorite kasutamise efektiivsus väheneb. Sellest tulenevalt sisaldab proteiinirikkamat söödaratsiooni saanud loomade väljaheite rohkem lämmastiku.

Loomiliseks ammoniagiai lendumist mõjutavaks teguriks on uriini pH. Mida kõrgem onuriini pH (happelisus), seda rohkem ammoniakki lendub.

Loomapidamishoone konstruktsioon ja pidamisviis. Lõaspidamisega lautades lendub vähem ammoniakki, kuna väljaheitedega saastab suhteliselt väike ala. Allapanukoguse suurenesed ammoniagiai lendumine väheneb.

Ventilatsioonisüsteem. Ammoniagiai emissiooni sõltub õhuvahetuse kiirusest. Mida rohkem ajaühikus õhku vahetub, seda suurem on lenduva ammoniagiai kogus. Loomiliku ventilatsioonisüsteemis lähtudes sõltub õhuvahetuse kiirus välis- ja sisetemperatuuri erinevusest.

Lõastatud pidamisviisi korral lendub keskmisel 5, vabapidamisega lautades 10, sügavallapanul pidamisel aga 7% kogu väljaheitedes sisalduvast lämmastikust. Ammoniagiai lendumist laudas suurendab restpörandate ja vähehe allapanu kasutamine, samuti ebakorrapärase sönniku eemaldamine. Keskmist ammoniaklämmastikuumissüsteemil loomapidamishoonest arvutatakse võrrandi 5 alusel:

Võrrand 5. NH₃, kg = N väljaheited, kg x emissioonifaktor x sk / 100, kus:

sk – suvine karjatamine, aastaringse lautapidamise korral sk = 1; suvine karjatamine korral sk = 1 - (suvise karjatamise päevade arv aastas/365).

Ammoniagiai emissioonifaktorid erinevate pidamisviiside, toodangu ja –vanuserühmade lõikes on toodud tabelis 12.

Tabel 12. Ammoniagiai emissioonifaktorid loomapidamishoones sõltuvalt pidamisviisist ja sönniku koristamise süsteemist

<table>
<thead>
<tr>
<th>Veiserühm</th>
<th>Pidamisviis, sönniku eemaldamise süsteem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piima- või ammlehmad, lihaveised, lehm- või pullmullikad</td>
<td>Lõaspidamine, sönnikuemaldus mobiilse vahendiga 2…3 korda päevas, rohke allapanu (avatud süsteem)</td>
</tr>
<tr>
<td></td>
<td>Lõaspidamine, kraapkonveierid, sönnikuemaldus >3 korda päevas, rohke allapanu (avatud süsteem)</td>
</tr>
<tr>
<td></td>
<td>Lõaspidamine, skreeperseadm, sönnikuemaldus 2…3 korda päevas, rohke allapanu (suletud süsteem)</td>
</tr>
<tr>
<td></td>
<td>Lõaspidamine, skreeperseadm, sönnikuemaldus > 3 korda päevas, rohke allapanu (suletud süsteem)</td>
</tr>
<tr>
<td></td>
<td>Vabapidamine, mobilne sönnikuemaldus 2…3 korda päevas, vähene allapanu</td>
</tr>
<tr>
<td></td>
<td>Vabapidamine, skreeperseadm, sönnikuemaldus >3 korda päevas, vähene allapanu</td>
</tr>
<tr>
<td>Vasikad</td>
<td>Vabapidamine, sönnikukanalid, vähene allapanu</td>
</tr>
<tr>
<td></td>
<td>Vabapidamine, sügavallapanu</td>
</tr>
<tr>
<td></td>
<td>Vabapidamine, vähene allapanu</td>
</tr>
</tbody>
</table>

Tabel 13. Metaani emissiooni veise organismist (kg/loom)

<table>
<thead>
<tr>
<th>Veiserühm</th>
<th>Metaani emissioon kg/loom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piimalehmad</td>
<td>128</td>
</tr>
<tr>
<td>Veised, v.a piimalehmad</td>
<td>53,0</td>
</tr>
</tbody>
</table>
7.2.3. Saasteainete eritumine sönniku- ja kääritusjäagi hoidlast

Lämmastiku puhul on oluline sõnnikukihi õhuline struktuur ja hapniku ligipääs, vastasel juhul tekivad anaeroobsed tsoonid ning õhulises sisemuses oleva kõrgema temperatuuri käivitub kuivkääritamine ja lendub arvestatav kogus metaani. Sarnaselt suureneb ka dilaämmastikoksiidi (N_2O) emissioon, sest anaeroobsed ja aeroobsed tsoonid vahetuvad, mis tekitavad mitmete tsoonide tuumast ja lisanduvat dilaämmastikust. Ammoniaagi emissiooni laskmine lekkide aktiviseeritakse lähtuvalt võrrandist 6:

\[
\text{Võrrand 6: } \text{NH}_3, \text{kg} = (\text{N}_{\text{välaheited}}, \text{kg} \times \text{sk-emissioon laudas, kg}/1,214) \times \text{emissioonifaktor} / 100,
\]

kus:

- \text{sk} – suvinõlupiirang, aastaringse laudaspidamise korral \text{sk} = 1; suvinõlupiirang korral \text{sk} = 1-(suvinõlupiirang päevade arv aastas/365);
- 1,214 – ammoniaagilt lämmastiku ülemineks.

Tabel 14. Ammoniaagi emissioonifaktorid erinevate ladustamisviiside lõikes

<table>
<thead>
<tr>
<th>Hoidla tüüp/säilitusviis</th>
<th>Emissioonifaktor, %</th>
<th>Leostumine, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Sõnnikuaun, loomulik koorik</td>
<td>30,0</td>
<td>5,0</td>
</tr>
<tr>
<td>Sõnnikuaun, kaetud turba, saepuru, pinnase vm materjaliga</td>
<td>20,0</td>
<td>5,0</td>
</tr>
<tr>
<td>Tahesõnnikuhoidla, loomulik koorik, pealt täitmine</td>
<td>40,0</td>
<td></td>
</tr>
<tr>
<td>Tahesõnnikuhoidla, fiikseeritud tehis katsus, pealt täitmine</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>Tahesõnnikuhoidla, fiikseeritud tehis katsus, all täitmine</td>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>Vedelsõnnikuhoidla, laguun, loomulik koorik</td>
<td>20,0</td>
<td></td>
</tr>
<tr>
<td>Vedelsõnnikuhoidla, ringja põhiplaaniga, loomulik koorik</td>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>Vedelsõnnikuhoidla, jääk kate (blept-, telkkatus)</td>
<td>2,0</td>
<td></td>
</tr>
</tbody>
</table>

Nõue ei kehti sügavallapanusõnnikule, mis vastab üldalnimetatud määruse § 4 lõikes 3 sätestatule. Sõnnikuauna ei tohi kahe teinetisele järgneval aastal paigutada samasse kohta. Allikate ja karstilehtrite ümbruses on 10 meetri ulatuses veepiirist või karstilehtri servast keelatud sönniku hoidmine aunas, kui kaitse-eeskirja teisiti ei sätesta, Kaitse-eeskirjaga võib 50-meetrise piirangutega ala ulatust vähendada.

Loomühiku eksternalendiks on sõnniku lämmastikust kogus, mida produktseerib piimalehm kui Eestis suurimat majandusliku tähisust, kui ka keskkonnariske omav põllumajandusliku toodangu ja vanuserühmad kalkuleerituna loomühikuteks. Kompostimisprotsessi realiseerimine) Pullmullikad (6 kuud kuni 35; 51; 63; 27 kuud) ja lehmvasikad (0-66 kuud) või rohkem ruutmeetrit. Tahesõnnikuhoilulast lendub keskmiselt 27,8 kg fosforit ja 90,8 kg kaliumit aastas.

Tabel 15. Veiste toodangu ja vanuserühmad kalkuleerituna loomühikuteks.

<table>
<thead>
<tr>
<th>Loomühik</th>
<th>Lämmastik, kg</th>
<th>LU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehmad, 8725kg</td>
<td>113</td>
<td>1,1</td>
</tr>
<tr>
<td>Aamllehmad</td>
<td>63</td>
<td>0,6</td>
</tr>
<tr>
<td>Lehmvaskikad (0-6 kuud)</td>
<td>14</td>
<td>0,14</td>
</tr>
<tr>
<td>Pullvaskikad (11 kuud)</td>
<td>11</td>
<td>0,11</td>
</tr>
<tr>
<td>Lehmmullikid (6 kuud kuni poegiemine)</td>
<td>51</td>
<td>0,5</td>
</tr>
<tr>
<td>Pullmullikid (6 kuud kuni realiseerimine)</td>
<td>35</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Vääksemate hoidlade puhul on teoreetiliselt võimalik hoidla katta ujuvatagga, milleks võib-olla 10 cm pakse kergkruusa-, hekselpõhu-, 0,5 cm pakse paksu kapsi. Vääksemate hoidlade puhul on see tehniliselt raskesti teostatav ning pole ka majanduslikult otstarbekas. Kilematerjal ja kõige enam vääksemate hoidlade puhul on kasutusel, kui vääksemate hoidlade puhul on see tehniliselt raskesti teostatav ning pole ka majanduslikult otstarbekas. Kilematerjal ja kõige enam vääksemate hoidlade puhul on see tehniliselt raskesti teostatav ning pole ka majanduslikult otstarbekas. Kilematerjal ja kõige enam vääksemate hoidlade puhul on see tehniliselt raskesti teostatav ning pole ka majanduslikult otstarbekas.
Hoidla katmiseks sobivad 10 cm paksune kergkruusa-, hekselpõhu-, 0,5 cm paksune rapsõlikiht või ujuv membraankate. Suure hoidlate puhul on see tehniliselt rasketi teostatav ning pole ka majanduslikult otstarbekas. Soovitav on rönksamahutid projekteerida ja ehitada õhutihedalt, mille puhul ammoniaagina lendub arvestustulikult 2 % sõnnikuläämmastikust.

Katmata kääritusjäägi hoidla puhul sõltub metaani emissioon mitmetest erinevatest teguritest: biogaasijaamas kasutatud suunast ja biolagunavastus, anaeroobse käärimise protsessi viibjeast ja temperatuurist kääritusjäägi hoidlas. Sõltuvalt toorainete koostisest ja biolagunavastuse astmest arvestatakse CH₄ emissioons võhkendamisel 0-5% biogaasijaamas toodetud metaani kogusest. Ebakvaliteetsetest tekkimisprotsessidest võib see ulatuda kuni 25%-ni. Seetõttu on vedel- ja tahesõnnikul ning rohtsel biomassil baseeruvate biogaasijaamade puhul otstarbekas kaheastmelise biogaasijaama (kääriti + järelkääriti) rajamine. Optimaalne on kääritusjäägi hoidla katmine, mis võimaldab suurendada energiatoodangut ning vähendada kasvuhoonegaaside emissiooni.

Tabel 16. Metaani emissioon sõnniku säilitamisel (kg/aasta/loom)

<table>
<thead>
<tr>
<th>Veiserühm</th>
<th>Sõnniku liik</th>
<th>Metaani emissioon, kg/aasta/loom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüpsilehad</td>
<td>Vedelsõnnik</td>
<td>21,0</td>
</tr>
<tr>
<td></td>
<td>Tahesõnnik</td>
<td>3,0</td>
</tr>
<tr>
<td>Veised v.a. lüpsilehad</td>
<td>Vedelsõnnik</td>
<td>6,0</td>
</tr>
<tr>
<td></td>
<td>Tahesõnnik</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Võrreldes teiste loomakasvatuses tekkivate saasteaineteega on lämmastikksüüdite, põhiliselt N₂O (naerugaas), emissioon suhteliselt väike. Parniseks lämmastikksüüdite emissiooni allikaks on orgaanilise ujuvkihiga (hekselpõhk ja looduslik õlid) sõnnikuhoidlaid ja vedelsõnnikuga põldude väetamine. Dilämmastikksüüdi tekke eelduseks on esmalt hapniku olemasolu ja nitraadi teke, N₂O tekib järgnevas protsessis ehk denitrifikatsioonil anaeroobses keskkonnas, kui hapnik pole bakteritele kättesaadav. Keskmiselt arvestatakse, et vedelsõnnikuhoidlast lendub 0,1 % ladustatud lämmastikust lämmastikosiididen, tahesõnnikul puhul vastavalt 2,0 %.

Naturaalne koorik sõnnikukihki pinnal. Avatud hoidlates tekkib soojal aastaajal (märtsist oktoobrini) teatavates tingimustes sõnniku pinnakihile naturaalne koorik, mis piisava paksuse korral mõjutab saasteainete emissiooni. Kuna keskkond koorik all muutub hapanikvaesemaks, siis ammoniaga emissiooni mõjutamine väheneb, metaani ja dilämmastikosiidi lendumine aga suureneb. Naturaalne kooriku tekst ja ammoniaga emissiooni mõjutavad:

- **Looma liik** – suurema tõenäosusega võib naturaalne koorik tekkida veise vedelsõnniku või kääritusjäägi (nii veise-, sea kui ka linnusõnnik) pinnakihile. Tavapäraselt sadeneb veise vedelsõnniku tahke osa hoidla põhja, seega naturaalse kooriku tekkes tingimused puuduvad.

- **Sõnniku liik** – naturaalne koorik võib tekkida nii tahe-, poolvedel kui ka vedelsõnniku pinnakihile. Sügavallapanusõnnikule tavapäraselt koorikut ei teki, kuna materjal on selleks liiga õhuline (puudub faktor, mille mõjul pinnakihiti pisavalt tiheneks). Tahesõnniku puhul naturaalne koorik ammoniaga emissiooni vähendajana tõhusalt ei oma (foto 1), kuna lendumine on intensiivne vahetult pärast ladustamist ja enne naturaalse kooriku moodustumist (Kaask, 2012).

- **Sõnnikuhoidla pindala ja täitmine viis** – suure pindalaga hoidlates (eriti laguuntüüpi) on naturaalne kooriku (ka osaliselt hoidla pinda katva) tekke võimalused suuremad (fotod 2 ja 3). Hoidla alt täitmine soodustab kooriku tekset. Määrava tähtsusega on hoidla täitmine intensiivsus, suure koguse...
värske vedelsõnniku kiire lisamine (ka alttäitmise korral) põhjustab erinevate sõnnikuhiitide segunemise, mis purustab formeerumaa hakkava naturaalse kooriku, seda eriti tühja hoidla puhul.

- Tootmise s.h. taimekasvatuse intensiivsus – intensiivse tootmise korral väetatakse rohumaid jm. kultuure vegetatsiooniperioodi vältil vedelsõnnikuga. Selle tulemusena segatakse (homogeniseeritakse) hoidlasse kogutud vedelsõnnikut korduvalt, mis välistab naturaalse kooriku tekke. Juhul kui kölvikute väetamine toimub kaks korda aastas, siis on tingimused naturaalse kooriku tekkeks suuremad.

Fotod 2 ja 3. Tüüpine laguuntüüpi vedelsõnnikuhoidlaid osaliselt formeerunud (formeeruma hakkava) naturaalse koorikuga. Antud juhul koos koorikut saastainete emissiooni vähendav efekt puudub. (Fotod: Aino Nõmmets)

Küimal aastaajal (fotod 4 ja 5) on saastainete emissioon vedelsõnnikut ja kääritusjäägist madala välistemperatuuri tõttu tõsist. Saastainete emissioonile värskest tahve- ja sügavallapanusõnnikut välistemperatuur oluline mõju ei avalda, kuna tänaj kõrgemate kuivainesisaldusele on käärimisprotsessid (soojuse vabanemine) oluliselt intensiivsemad. Vedelsõnniku- ja kääritusjäägi hoidlat kattev jää ja lumekiht ei ole naturaalne koorik.

Fotod 4 ja 5. Talvine jää ja lumekiht (a) ja naturaalne koorik pärast lume ja jää sulamist (b) rõngasmahuti pinnal. Märkimisväärne saastainete emissiooni tänapadale temperatuurile puudub. (Fotod: Marek Maasikmets)

7.2.4. **Saasteainete eritumine sõnniku ja kääritusjäägi laotamisel**

Lämmastik on sõnnikus esindatud nii anorgaanilises (mineraalses) kui ka orgaanilises vormis. Mineraalne lämmastik, põhiliselt ammoniumioonidena (NH₄⁺) on taimede poolt kergesti omandatav, kuid ka kergesti ammoniaagina atmosfääri lenduv. Ammoniumlämmastiku üleminekul mullas nitraatlämmastikuks võib esineda kadud ka denitrifikatsiooni ja leostumise tulemusena. Taimedele kergesti kätesaadava lämmastiku kadude peamised põhjused on:

- Ammoniaagi lendumine.
- Nitraatide leostumine.
Heide õhku. Laotamise käigus mõjutavad ammoniaagi lendumist atmosfääri paljud tegurid (tabel 17). Orienteeruv ammoniumläämmastiku kadu erinevate õhu temperatuuride ja niiskuste korral on esitatud tabelis 18 (AGRI-FACTS, 2008).

Põllule laotatud, kuid sissekündnata tahesõnniku kergestiti omanumine lendeb suhteliselt kiiresti ammoniaagina atmosfääri 50...60 %. Ammoniaagi lendumine vedelsõnnikust sõltub kuivainesisaldusest. 6 % kuivainesisalduse juures on ammoniaagi lendumine vedelsõnnikust ca 20 % suurem kui 2 % korral. Ammoniaagi emissiooni (kg) sõnniku laotamisel kalkuleeritakse võrrandi 7 alusel:

\[
\text{Võrrand 7, } \text{NH}_3, \text{ kg} = (\text{N väljaheited, kg} \times \text{sk – emissioon laudas, kg}/1,214 – \text{emissioon hoidlas, kg}/1,214) \times \text{emissioonifaktor}/100, \text{ kus:}
\]

- sk – suvine karjatamine, aastaringse laudas pidamise korral sk = 1; suvise karjatamise korral sk = 1 - (suvise karjatamise päevade arv aastas/365);
- 1,214 – ammoniaagi lämmastiku ülemineku tegur.

1,214 – ammoniaagi lämmastikule ülemineku tegur.

Tabel 17. Ammoniaagi lendumist mõjutavad tegurid

<table>
<thead>
<tr>
<th>Tegur</th>
<th>Näitaja</th>
<th>Mõju</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Madalama pH-ga (happelisemast) mullast on lendumine väiksem</td>
<td></td>
</tr>
<tr>
<td>Katioonide vahetuse võime</td>
<td>Suur katioonide vahetuse võime vähendab lendumist</td>
<td></td>
</tr>
<tr>
<td>Ilmastik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatuur</td>
<td>Kõrgemal mulla- ja õhutemperatuuril on lendumine suurem</td>
<td></td>
</tr>
<tr>
<td>Sademed</td>
<td>Sademed vähendavad toitainete kontrastsetoomi sõnnikus ja kääritusjäägis ning sõnnikust umbusse mulda, seetõttu ammoniaagi lendumine väheneb, samal ajal leovastumise risk suureneb.</td>
<td></td>
</tr>
<tr>
<td>Tuule kiirus</td>
<td>Tuule tuvevemine suurendab lendumist</td>
<td></td>
</tr>
<tr>
<td>Õhu niiskus</td>
<td>Kuivas õhus on lendumine suurem</td>
<td></td>
</tr>
<tr>
<td>Käitlemine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laotusviis</td>
<td>Sõnniku ja kääritusjäägi õhuga kokkupuutuv pind. kust ammoniaikka saaks lenduda. peaks olema miniimalne.</td>
<td></td>
</tr>
<tr>
<td>Sõnniku liik (tüüp)</td>
<td>Ammoniaagi lendumist mõjutab sõnniku ning kääritusjäägi kuivaines- ja ammoniumläämmastikusisaldus ning pH. Nende tegurite madalama väärtuse korral on ammoniaagi lendumine samuti väiksem.</td>
<td></td>
</tr>
<tr>
<td>Laotamise aeg ja sõnniku doseerimine</td>
<td>Sooja, kuiva, pääkesepaistelist ja tuulist ilma tuleks tõlgida. Mida suurem on sõnniku või kääritusjäägi kogus pindalaühikule, seda pikem on toitainete sidumise aeg.</td>
<td></td>
</tr>
<tr>
<td>Taimkate</td>
<td>Tihe ja kõrge taimik pärast ammoniaagi lendumist, kuna maapinna lähedal on tuule kiirus ja õhu temperatuur madalamad võrreldes taimikatteta pöllupinnaga.</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 18. Ammoniumlämmastiku kadu (%) erinevate õhu temperatuuride ja niiskuste korral

<table>
<thead>
<tr>
<th>Laotamise ja muldaviimise ajaline vahe</th>
<th>Keskmise Jahe (< 10 °C)</th>
<th>Palav (>25 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niiske</td>
<td>Kuiv</td>
</tr>
<tr>
<td>1 päev</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>2 päeva</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>3 päeva</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>4 päeva</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>5 päeva</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Ei viida mulda</td>
<td>65</td>
<td>40</td>
</tr>
</tbody>
</table>

Tabel 19. Ammoniaagi emissioonifaktorid erinevate laotamistehnooloogiate lõikes

<table>
<thead>
<tr>
<th>Laotamise viis</th>
<th>Emissioonifaktor, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tahesõnniku paisklaotus, muldaviimiseta</td>
<td>60,0</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus, muldaviimine > 12 h</td>
<td>50,0</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus, muldaviimine < 12 h</td>
<td>30,0</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus, muldaviimiseta</td>
<td>70,0</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus, muldaviimine > 12 h</td>
<td>65,0</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus, muldaviimine < 12 h</td>
<td>55,0</td>
</tr>
<tr>
<td>Vedelsõnniku lohislaotus, muldaviimiseta</td>
<td>24,0</td>
</tr>
<tr>
<td>Vedelsõnniku lohislaotus, muldaviimine > 12 h</td>
<td>10</td>
</tr>
<tr>
<td>Vedelsõnniku lohislaotus kasvavasse taimikusse (taimiku kõrgus 10-30 cm)</td>
<td>20</td>
</tr>
<tr>
<td>Vedelsõnniku düüsidega lohislaotamine kasvavasse taimikusse (taimiku kõrgus vähemalt 8 cm)</td>
<td>18</td>
</tr>
<tr>
<td>Vedelsõnniku avalõhe sisestuslaotus rohumaal</td>
<td>10,0</td>
</tr>
<tr>
<td>Vedelsõnniku segamislaotus</td>
<td>5</td>
</tr>
<tr>
<td>Vedelsõnniku sulglõhe sisestuslaotus rohumaal</td>
<td>1,0</td>
</tr>
<tr>
<td>Vedelsõnniku sulglõhe sisestuslaotus põllumaal</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Metaani ning lämmastikokiidide lendumine sõnniku ja kääritusjäägi laotamise käigus on minimaalne.

suurte laotusnormide korral kasvab oht, et kogu vedelsõnnik ei imbu kohe mulda ja põllu pinnale jäänud loigud uhtonakse sealt tugevate vähmade korral ära.

Lõhnaheide. Lõhnaainete eritumine sõltub sõnniku keemilisest koos
tisest ning käitlemise, ladustamise ja
laotamise tehnoloogiast. Lõhnaainete ja ammoniaagi emissiooni mõjutavad faktorid laotamisel on sarnased (vt. tabel 17, 18 ja 19).

7.2.5. Müra

Intensiivset loomakasvatusset pärinev müra võib osutuda probleemiks juhul, kui loomapidamishooned asuvad elurajoonide vahetuses. Loomapidamishoone siseselt võib pidev kõrge müratase vähendada loomade
heaolu ning põhjustada toodangutaseme langust, samuti mõjuda negatiivselt personali tervisele. Veist ei tohi pidada ruumi, kus müratase ületab pidevalt 65 dB („Nõuded veise pidamise ja selleks ettenähtud ruumi või

Müra tekke veiselautades lähtub:

- loomadest (liikumine, söötmis-puhkealal vms),
- lauda konstruktsioonist, pidamisviisist (ventilatsioon-, lüpsiseadmed vms),
- söötmisest (söötade segamine, - jaotamine),
- sõnniku käitlemisest (sõnniku eemaldamise seadmed)

Tabelis 20 on esitatud tüüpiliste müra tekitavate tegevuste loend, müra kestus ning müra tase.

<table>
<thead>
<tr>
<th>Müra allikas</th>
<th>Kestus ööpäevas, h</th>
<th>Müra tase, dB</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loomad (hiilisel, häälitsemine)</td>
<td>pidev</td>
<td>55..70</td>
<td>Sõltub pidamisviisist</td>
</tr>
</tbody>
</table>
| Söötmine (traktorid, sõõruseadmete pesu- ja desinfitseerimine) | 1…2 | 90…100 | Sõltub pidamisviisist ja
sisendtehnoloogia |
| Asemete puhastamine, sõnniku eemaldamine (traktor, sõnniku eemaldamise seadmed) | 2…3 | 90…100 | Sõltub pidamisviisist ja sõnniku eemaldamise tehnilahtist |
| Lüpsmine | 2…8 | 70…80 | Kestus sõltub loomade arvust ja
lüpsitehnoloogia |
| Ventilatsioon | pidev | 50…60 | Ainult sundventilatsiooniga
lautades |

7.2.6. Jäätmed

Kemikaalide ja ravimite jäägid, õlid ja määrdaaineid, vanametall, kasutuskõlbmatud auto- ja traktorirehvid, pakematerjalid, ehitusjäämed. Põhilise osa jäämetest moodustavad mitmesugused pakematerjalid –
paberikotid, pappkastid, silopallide või silohoidlate katkekle jms. Ohtlike jäämete kategooriasse (eraldi kogumine, utiliseerimine) kuuluvad kemikaalide- (lüpsiseadmete pesu- ja desinfitseerimine) ja kasutusaja ületanud ravimite jäägid, samuti kasutatud õlid ja määrdaaned.

Jäämed kogutakse tavaliselt konteineritesse (ohutliku jäätmed eraldi). Jäämete transport utiliseerimisele ja/või
ladustamispaikadesse on tallitud kas teenustööna vastavalt firmadelt või organiseeritud ettevõtte siset. Ülalnimetatud jääjate kohapealne põletamine või matmine on keelatud.

Loomised jäätmed. Veisekasvatusasseadude tootmise käigus tekkivad loomised jäätmed (surnud loomad) tuleb utiliseerida (kremeerida) vastavalt tegevusluba omavates ettevõtetes. Loomsete jäätmete transport utiliseerimisse on tellitud kas teenustööna vastavalt firmadelt või organiseeritud ettevõtte siset. Loomsete jäätmete kohapealne põletamine või matmine on keelatud.

Reovesi. Veisekasvatusettevõtest tekkiv reovesi võib sisaldada sõnniku-, virtsa-, allapanu- ja sõõrulääke; lüpsiseadmete pesu- ja desinfitseerimisaseno jääke ning inimtegevuse jääkprodukte (duširuumid, tualetid). Tavaliselt lisandub reovee hulka ka lauda õmbrusest kanalisatsiooni kaudu kogutav sademetevesi. Seepärast sõltub reovee kogus suurel määral sademete hulgast.

Sõltuvat pidamis- ja sõnniku käitlemise tehnoloogian võib veisekasvatusettevõtet olevi reovee juhtida vedelsõnniku hoidlasse, koguda spetsiaalselt seitsmaks ettenähtud mahutisse ja töödelda kohapeal asuvas
puhastusseadmes või juhtida üldisesse kanalisatsioonisüsteemi. Eelisstatult tuleks inimtegevusest, eriti aga tualettidest pärit reovesi juhtida kogumismaahutitesses, töödelda kohapeal asuvas puhastusseadmes või juhtida üldisesse kanalisatsiooni.

8. Tehnika vastavusse viimine parima võimaliku tehnikaga

8.1. Hea pöllumajandustava

Hea pöllumajandustava seisukohtade järgimine on parima võimaliku tehnika (PVT) oluline osa. Hea pöllumajandustava järgimine on tootjale soovituslik, välja arvatud juhul kui HPT nõuete täitmist ei ole muudetud õigusakti kohustuslikuks. Vaatamata sellele, et saatekoormuse vähendamise või energia ja vee säästvama kasutamise mõju keskkonnale on keerukas hinnata, on selge, et veisekasvatusettevõtte optimaalne juhtimine vähendab keskkonnasüsteemis. Et parendada keskkonda säästvat majandamist on parima võimaliku tehnika (PVT) eesmärgid veisekasvatusettevõtte alljärgnevad:

- Põllumajandusettevõtte töötajate täiendöpe- ja koolitusvajaduse määramine. Regulaarset täiendöppe korraldamine.
- Ener gia, vee, loomasöötade, tootmisjääete ning sönniku täpne arvestus.
- Tegevuskavade väljatõötamine hädaolukordadeks (soovimatu saaste tekitamine).
- Rajatiste remondi- ja tehnika hoolitsemise vajaduse määramine.
- Tegevuste süsteemne planeerimine, näiteks sisendite hankimine, toodangu ja jäämete äravajaduse.
- Väetiste ja sõnniku laotamisplaanide koostamine ja järgimine.

8.1.1. Tegevuste planeerimine

Paljud tegevused on etteplaneerimise korral kasumlikumad, võimaldades tööde sujuvamat laabumist ning mitteseisisvõtavate tulemuste vältimist. Näiteks sönniku laotamine põllule nõuab paljude asjaolude arvestamist ning tööde organiseerimist:

- Mulla- ning sönnikuproovi võitmine ning biokompostite omaduste määramine.
- Analüüsi tulemuste põhjal sönniku optimiseerimist koguste kalkuleerimine.
- Ilmastikuolude arvestamine sönniku laotamisel.
- Õlblue kuullemise elanikele ja mõjutamise minimeerimine sönnikulaotamise perioodil.
- Vajalike liikumisplaanide tagamine.
- Tehnika korrasoleku kontroll.
- Töötajate informeerimine tegevuskavades hädajuhtumil korral.

Samal ajal on mudel Lanka tulemusid teised tegevused, nagu näiteks kütuse, söödud, mineraalväetiste jt. sisendite transport ettevõttesse ning toodangude, loomade, jääkidemite ja kliimaharu kulutamine ettevõttes. Lepingupartnerite ja hankijate teavitamise ettevõttetees tagab tegevuste planeerimist, et tegevused korrasoleksid ja saaksid tõrgeteta koostöö.

8.1.2. Lauda asukoha valik

Laud on investeerimismahakuse objekt, mis jääb püsima aastakümnetes. Seetõttu tuleb lauda asukoha valikul hoolikalt läbi mõelda paljude logistilised, keskkonnakaitse- ja sotsiaalsed aspektilid:

- Rohumaade paiknemine. Kui loomi karjatatakse ei tohiks karjamaad asuda laudast kauem kui 1,5 km ning rohumaad, kust varema osa piirsõbivad kauem kui 7 km.
- Elamute või lähima asula suhtes peaks laut võimalusest piinknema reljeefilt madalamal ja valitsevanate tuulte suhtes allatuvat. Samuti ei tohiks laud piirata naabrute väljavoolu, takistada juurdepääsuteid, häirida ümberistvat keskkonda ja hüvitada, valitsevat lauda, aitavat, halva lõhma jms.
- Teedevõrk: Soovitav on ehitada uus laut juba olemasoleva tee ärade. Riigimaantee ääres kehtib 50 m kaitsetsoon, küla ehitamine vajab Maanteeamet koostööga.

33
Vesi ja kanalisatsioon: Laut peab jäema väljapoole puurkaevude II kaitsetsooni (10…15m). Väike maapinna kalle (>0,003) soodustab heit- ja sademete vee ärajuhtimist.

Pinnase kandevõime, põhjavee tase: Küllaldase kandevõimega pinnasele on odavam ehitada. Põhjavesi peab jääma vähemalt 1,5 m sügavusele.

Energiavarustus: Olemasolevad liinid, alajaamad, tarbimisvõimsused.

Tootmise suurendamise võimalused tulevikus.

8.1.3. Töötajate koolitus

Igale töötajale koostatud personaalsed koolituskavad, kus on näidatud koolituse toimimise ajandus ja sises, annab võimaluse erinevate tootmistsükli osadest töötajale olema erinevat aspektide määratlemise võimalusi.

Soovitusliku viisik veisekasvatusega tegeleva ettevõtte personalile täiendkoolitus ning väljaõpe aastas olla:

- Loomadega tegelev töötaja (lüpsjad, karjakud, jne) – 2…10 tundi.
- Tehnikaga tegelev töötaja (tractoristid, mehaanikud, jne) – 2…10 tundi.
- Spetsialistid ja juhtivtöötajad – 10…20 tundi.

8.1.4. Omaseire korraldus ja andmete korraldamine

Omaseire eesmärgiks on selgust tagada tagajärjedest, mida toob enda kaasa ühe või teise sisendi kasutamise muutumise (suurenemise/vähenemise) eest. Indikaatoriteks võivad olla niisutamine (toodangu omahinnas tõus/langus), sotsiaalsed (töötingimuste paranemine/halvenemine, töö efektiivsus) kui ka keskkonnas (saasteainete emissiooni suurenemine/vähenemine) näited. Korrapärane vee, energia (elekter, gaas, vedelkütus), sõidut, näidet ja väetist s.h. sõnniku kogust arvestus ja olukorra hindamine on peamiseks omaseire korraldamise aluseks. Võimalikult efektiivne majandamise eesmärgil tuleks omaseire andmeid regulaarselt koguda ja seda võimalike tõkestest kasutada.

8.1.5. Remont ja hooldus

Kõik ainult, mis aitavad hoida juhturite tõhusa ja seadmete funktsionaalsuse tagamiseks (õhukatsetamine, kotki, jäätmete puhastamine jms), vähendavad keskkonnareostuse põhjustusi. Loomakasvatussehise korraldamine ja rakendamine tuleb regulaarselt kontrollida.
Igapäevases käibes oleva tehnika ja seadmete kriitilisemate varuosade reserv võiks olla ettevõttes olemas, tagamaks kiire remondi ja hoolduse. Korrapärase hooldustöö saavad teostada ettevõtte spetsiaalse väljaöppe saanud töötajad (tehnikud, mehaanikud). Keerulised ja/või spetsifilisemate remondi- ja hooldusööde korral tuleb pöörduda tootjafirma spetsialistide poole.

8.1.6. Hädaolukord
Läbimõeldud tegevuskava hädaolukorras aitab personalril (ettevõttel) kiiresti lahendada mittesooavitavaid olukordi (keskkonna roestumine; - seadmete, tehnikas ja hoonete kahjustumise ja/või hävimise oht; oht inimeste tervisele ja elule), seadmete avari, üleujutuse, tulekahju, vandalismi vms korral.

Tegutsemise plaan keskkonnareostuse korral.

Tegutsemise plaan tulekahju korral.

Toimunud hädajuhtumi likvideerimise järel on soovitav tegevuskavasid korrigeerida vastavalt saadud kokemustele.

8.2. Söötmise korraldus
8.2.1. Üldine taust
Söötmise korralduse eesmärk on, et söödaproteiini hoiustus, kui silo kuivaines on toorproteiini 15-17% ja energiat rohkem kui 9,4 MJ/kg kuivaines, moodustab kõige suurema hinnabased kättesaadavate, vajalike toitefaktorite tarve. Kõige tõhusalainen toitefaktorit on veekihelmed ja toorproteiinid.

Söötmise korralduse eesmärk on maksimaalselt tõhus, et suurendada loomade tootmist. Söötmise korralduse eesmärk on tõhusate reostuse all kiire ja tervislik tooidemüük.

8.2.2. Söötmine
Veitele söödetakse põhisöötasid (hein, silo, põhk jne) enamasti vahalt. Täiendus, sildus, toidu ja koguske varieerides varakasest ja kriitilisest varuosast tuleb pöörduda tootjafirma spetsialistide poole.
Söötmine baseerub söödaratsioonil, milles on hästi tasakaalustatud kõik loomale vajalikud toitefaktorid. Eesmärgiks on saada lüpsilehmadel maksimaalselt ja geneetilisele potentsiaalile vastavalt palju piima, majanduslikult kõige tasuvamal viisil.

Loomadele põhisöödaks toodetav silo on väga varieeruvastusega, sest lisaks rohtbodykest kasvufaasile varumise ajal sõltub see eelnevalt valitsenud ja ka koristuse ajal valitsevatel ilmastikutingimustest, kasutatud silkindlustuslisandist või konservandist jms. Kuna silo on põhisöödana kogu loomade õöpaevase ratsiooni peamine koostisos, siis on oluline määrata selle toiteväärtus laboratooril. Otstarbekas on laboratooril analüüsida ka teisi söödaratsiooni koostises olevaid söötasid, sest eeskätt kõik õöpäevades toodetud söötasid (naiteks muljutud konservvili või konservhernest/uba jm). Põhisöötade laboratoorised analüüsid on otstarbekas tehase hilissüügisel kui kõik söödad on varutud või vahetult enne ratsiooni võtmist. Oluline on tagada söötade säilitamise tingimused, mis ei vähenda säilimise käigus nende toiteväärtust.

Söötmistehnoloogia (söömisviis) sõltub paljudest teguritest: karja suuruse, piklikust või laisest osa, kus on üle mindud vabapidamisele, kuid ei ole veel soetatud sõödamikserit. Söömisviisi korral antakse söödad loomadele ette eraldi, kus on üle mindud vabapidamisele, kuid ei ole veel soetatud sõödamikserit. Söömisviisi puhul tuleb tähelepanu pöörata vahetult enne ratsiooni võtmist. Oluline on tagada sõötade säilitamise tingimused, mis ei vähenda säilimise käigus nende toiteväärtust.

Suur tööjõukulu.

Segasööt (TRSS või ORSS) mobiilse seadmega (foto 7). Tehnoloogiat rakendatakse peamiselt vabapidamisega, kuid ka lõaspamisega lautades. Söödaratsioonis olevad söödud kaalutakse, vajadusel peenestatakse silo, hein, põhk(k), segatake ja jaotatakse ühe seadmega. Segasööda söötmise tehnoloogia rakendamise eelduseks on loomade grupeerimine, kas piimatooodangu, laktatsionifaaasi või mõne muu parametri alusel. Grupeerimine sõltub paljudest teguritest, taivalset jalanub piimakari 4 rühma (negatiivse, 0- ja positiivse energiabilansiga ning kinnislehmade rühm). Miksersööda söötmise olulisemad eelised võrreldes klassikalise söömisviisiga on:

- Põhi- ja täiendsöötade üheaegsel söötmisel saab lehmadele enam pakkuda kontsentreeritud või loomadele tagada piimatoormiseks vajalikut toitainete sisaldusega söötasid, millega tagada piimatoormiseks vajalike toitainete vajadus.
- Suureneb piimatooodangu ja piima rasvasaldus.
- Vähenevad kulutused söötadel. Teadlased on jõudnud järeldustele, et samade põhi-ja täiendsöötade segus etteandmise vääribindavate lehmadele kuni 10% paremini piimaks.
- Väheneb ainevahetuslikku esinemissagedus.
- Stabiilne vatsamikroobide populatsioon, minimaalne vatsakeskkonna pH kõikumine.
- Loomad puudub võimalusi söötadest valida. Söötade tarbimine ratsiioniga ettenähtud proporsioon.
- Mittemaitsvatate söötadel (söödalisandite) kasutusvöimaluste suurenemine.
- Väheneb loodusse emiteeritavate potentsiaalsete saasteainete hulk.
- Tööjõukulu vähenedmine.

Tehnoloogia puudusteks on:

- Vajadus loomi grupeerida.
- Mõnikord osutub vajalikuks olemasolevaid hooneid modifitseerida.
- Söödaratsiooni koostamine vajab enam professionaalsete teadmisi.

Tabelis 21 on esitatud mobiilsete seadmete orienteeruv maksumus.

Tabel 21. Mobiilsete seadmete orienteeruv maksumus

<table>
<thead>
<tr>
<th>Seade</th>
<th>Min.</th>
<th>Max.</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lintsöötja</td>
<td>30</td>
<td>60</td>
<td>100-le lehmale, koos statsionaarsetest sõõdamikseriga</td>
</tr>
<tr>
<td>Mobiilne, haagis</td>
<td>20</td>
<td>55</td>
<td>Mahutavus 5…26 m³ (hind sõltub aluselt lisatarvikute)</td>
</tr>
<tr>
<td>Iseliikuv</td>
<td>80</td>
<td>200</td>
<td>Koos silofreesiga, mahutavus 8…24 m³</td>
</tr>
</tbody>
</table>

Foto 7. Mobilne söödamikser. (Foto: Aino Nõmmeots)
Täiendsöödaautomaat (foto 8). Täiendsöödaautomaate rakendatatakse vabapidamisega lautades, koos osaratsoonilise segasööda tehnoloogiaga. Täiendsöödaautomaadid on sageli lautades, kus kasutatakse robotlüpsike seadmeid ja rippteel ehk söödavaguniga ORSS’i andmist. Täiendsöödaautomaatide kasutamise eesmärgiks on täiendsöödade täpne ja selekteeritud (lisa)söötmine sõltuvalt laktatsiooni staadiumist ja piimatoodangust. Täiendsöödaautomaatidest on võimalik sööta nii proteiini- kui energyasöötasid. Täiendaautomaadid on lehmal võimalik vastavalt vajadusele saada 1–4 täiendsööta.

8.2.3. Jootmine

Vee sügavus jooturis peab olema vähemalt 60…70 mm. Jooturi ülemine serv peab joogivese nivoost olema 50…100 mm võrra kõrgemal. Vabapidamise korral on avatud jooturi ülemine serva kõrgus lehma seisutasapinnast, nii et jooturi pinnale saaks veevoolu ja astumisel. Lõaspidamise korral on vajalik veenõu, mille ülemine serva kõrgus looma seisutasapinnast on vähemalt 750 mm.

Loomade jootmiseks tohib kasutada vaid töökoorras (mitte lekkivaid) ning kergesti puhastatavaid jootureid. Jooturite puhtust tuleb kontrollida vähemalt üks kord ööpäevas.

Jooturid peaksid paikneda kohtades, kus vee reostumissoot sõõda-, allapanu jms. materjalidega on minimaalne. Jootureid ei ole soovitav paigaldada sõõdalavale, kuna sõõvad ja joovad loomad hakkavad üksteist segama ning (sügav)allapanuga alale, kuna selle ümbrust on raske kuivana hoida. Vabapidamisega lautades peaks jooturi täha jäänud laius olema vähemalt 3…3,5 m.

Vajalik individuaaljootturite arv või grupijootturi joomisfront sõltub loomade valudes, sõõda kuivaineesialdusest, primatooodangust ning sõõda kättesaadavusest. Jooturite veetootlikkus ei tohiks olla väiksem kui 6…20 liitrit minutis ühe looma kohta, mille taga toitotestikku rühk 2,5…3,5 haari. Individuaalsete kaussjootturite veenõude maht on enamasti 1,5…3,0 liitrit. Avatud künajootturi soovituslik mahutavus on 200 liitrit ning see peab olema varustatud ühendusavast. Veenõud on harilikult valmistatud plastist, glasuuremailiga kaetud malmist, tsingitud, roostekindlast terasest, betoonist vv. Materjali testmistest veeste gruppivisilisel pidamisel peab 10 või enama looma korral olema vähemalt 10 jooturit (ühe jooturi kohta arvestatakse maksimaalselt 6…10 lehma).

Veiste jootmisaseadmeid liigitatakse automaatseerituse, veevoolu reguleerimise, veenõu juhtimise ja veeteenuse toodavate seadmete alusel. Veeste jootmisaseadmete liigitatakse automaatseerituse, veevoolu reguleerimise, veenõu juhtimise ja veeteenuse toodavate seadmete alusel.

Väikeste karjade puhul, aga ka karjamaal kasutatakse joomisnõusid e. anumaid (joonis 9), mida täidab inimene. Enamlevinud on joogiküünad ja –rendid, millest saab korraga juua ja juua mitu lehma. Jootmisnõude sagedane aeg võimaldab veega tätimine suurendab võimalikku veestiku ühendusavast.

Automaatsetel veega täituvaid seadmeid nimetatakse jooturiteks. Konstruktsiooni alusel eristatakse nimetatakse maitse- ja hoovalisele alusele.

Nivoojooturid (joonis 10). Nivoojooturis juhitakse veevoolu ujukiga.

Kaaljooturid (joonis 12). Veenõu asub kaalukangil ja klapi avamine-sulgemine toimub vastukaaluga seatud tasakaalutingimustel.

Termos(pall)jooturid (joonis 15). Termos(pall)jooturid on suure mahuga (80…110 liitrit) ning harilikult kahe joomiskohaga. Vee külmumine ja reostumine hoitakse ära veepinnal ujuvate pallide ja hästi isoleeritud korpusega. Kui toiteturustik on korrektelt paigaldatud ja isoleeritud, ei ole termos(pall)jooturi korral karta vee külmumist ka madalatel temperatuuridel.
Tabelis 22 on esitatud jooturite ning jootesüsteemide orienteeruv maksumus

Tabel 22. Jooturite ja jootesüsteemide orienteeruv maksumus

<table>
<thead>
<tr>
<th>Seade</th>
<th>Maksumus, €</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Nivoojootur</td>
<td>650</td>
<td>1000</td>
</tr>
<tr>
<td>Ninajootur</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>Kaaljootur</td>
<td>650</td>
<td>1000</td>
</tr>
<tr>
<td>Nivoojootesüsteem</td>
<td>650</td>
<td>2000</td>
</tr>
<tr>
<td>Elektrisoojendusega jooturid</td>
<td>80</td>
<td>330</td>
</tr>
<tr>
<td>Termos (pall) jooturid</td>
<td>460</td>
<td>1200</td>
</tr>
</tbody>
</table>

8.3. Vee efektiivne kasutamine

Võrreldes loomade joomiseks kuluvaa joogiveega on lehmade lüpsiks ettevalmistamiseks, lüpsi- ja piimajahutusseadmete pesemiseks ning lüpsikoja erinevate ruumide korras hoiks vajaliku veehulka väga raske eelnovalt hinnata. Kasutatavad veekogused võivad ettevõtete, kasutatavate seadmete jms. lõikes erineda kordades. Vajalik veehulk sõltub järgmistest faktoritest:

- Lüpsiseadmete tüüp.
- Pesemisseadmete tüüp. Survepesurid kulutavad oluliselt vähem vett.
- Personali harjumused ja töövõtted.
- Seadmete kaasaaegsus. Üldjuhul kulutavad kaasaaegsed seadmed vähem vett.
- Piimajahuti suurus.
- Lehmade asemete puhtus.
- Lehmade lüpsiks ettevalmistus. Ühekordsete pabersalvrätikute kasutamisel on veekulu minimaalne.
- Lüpsiplatši ja ooteala puhastusmeetod. Väljaheidetute eelnovelt mehhaamiline koristus vähendab oluliselt pesuveekulu.

Tabel 23. Tehnoloogilise vee vajadus veiselautades

<table>
<thead>
<tr>
<th>Operatsioon</th>
<th>Ligikaudne veevajadus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piimajahuti pesu</td>
<td>5 % jahuti mahutavusest pesu kohta</td>
</tr>
<tr>
<td>- automaatpesu</td>
<td>190…230 l/pesu</td>
</tr>
<tr>
<td>- käsitsipesu</td>
<td>115…150 l/pesu</td>
</tr>
<tr>
<td>Piimatorustik</td>
<td>285…475 l/pesu (piikades lõaspidamisega lautades suureneb oluliselt)</td>
</tr>
<tr>
<td>Lüpsiplatši seadmete pesu</td>
<td>45…75 l/pesu, neljatsükiline pesu</td>
</tr>
<tr>
<td>Kannulüpsiseadme pesu</td>
<td>115…150 l/pesu</td>
</tr>
<tr>
<td>Muude seadmete pesu</td>
<td>115 l/ööpäev</td>
</tr>
<tr>
<td>Lehmade lüpsiks ettevalmistus</td>
<td>4…17 l/pesu</td>
</tr>
<tr>
<td>- automaatne</td>
<td>1…7 l/pesu</td>
</tr>
<tr>
<td>Piimaruumi põrand</td>
<td>38…75 l/ööpäev</td>
</tr>
<tr>
<td>Lüpsiplatši põrand voolikuga pesu</td>
<td>190…380 l/pesu</td>
</tr>
<tr>
<td>WC kasutamine</td>
<td>8 l/kord</td>
</tr>
<tr>
<td>Dušširuumi kasutamine</td>
<td>60 l/kord</td>
</tr>
</tbody>
</table>
8.4. Lüpsmine

Lehmade lüpsmine toimub valdavalt lüpsimasinatega, käsitsilüpsi suurtootmises ehk piima tööstuslikus tootmises praktiliselt ei esine.

Lüpsiseadme ülesandeks on piima väljutamine udarast ja selle kogumine, millele lisandub üldreeklinga ka piima kurnamine ja jahutamine. Mistahes lüpsiseade koosneb vaakumseadmetest ja lüpsimasinatest.

Torusselüpsiseadmetel lisanduvad veel piimaliin ja puhastusseade.

Lüpsimasin on seade piima väljutamiseks udarast ja õmbriselüpsil ka piima kogumiseks (lisandub lüpsiäärmed).

Vaakumseadme ülesandes on vajaliku hõrenduse ehk vaakumi tekitamine lüpsisüsteemis.

Puhastusseade võimaldab lüpsimasinaid ja toorusselüpsi korral (torusselüpsil) ka piimaliinid puhastada. Seade koosneb juhtautomaadist, lahusemahutist, lahusejaotitest ja torustikust.

Piimaliin on ette nähtud piima transportimiseks torusselüpsil lüpsimasinast juhtumiseks. Üldjuhul kuuluib liini piimatoru koos kraanidega, kogur, pump, piima surve- ehk transporditoru, kurn ja vahel ka mõõturi ning plaatjahutu. Reeglitena piimakogud koos juurdekululuvaga piimaruumi. Suurtes lautades paigutatakse piimakogurid loomaruumi, millega võivad lüpsimiseks lüpsiäärmedest ülestöötlavate piimaliini osade ehk värvate arvu.

Piimajahuti ei kuulu oteselt lüpsiseadmete komplekti, kuid on lüpsilaudas mõõdupaasmatult vajalik. Uuemad jahutid on varustatud puhastusautomaatiga.

Kaasaegsetele lüpsiseadmetele võivad eeltoodud lisandude ja mismesugused automaatika- ja abiseadmed.

8.4.1. Vaakumseadmed

Üldjuhul koosneb vaakumseade vaakumpumbast, mida käitab elektrimootor, vaakumbaloonist, vaakumregulatoorist, vaakummeetrist ja kraanidega torustikust. Õlipumpad on viiaidavate seadmete käitamiseks käitumisnõuetele lõpedavate seadmete jaoks.

Vaakumseadme paigutatakse masinaruumis.

Vaakumregulatoor paigaldatakse lauta suunduvale torustiku. Vaakumliinil peab olema vähemalt üks vaakummeetrist, millel on paknudavate ja ajalolevat jälgimiseks ja kontrollimiseks.

Vaakumliin võib lahi juhtida lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.

Vaakumliini võib lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.

Vaakumregulatoor paigaldatakse lauta suunduvale torustiku. Vaakumliinil peab olema vähemalt üks vaakummeetrist, millel on paknudavate ja ajalolevat jälgimiseks ja kontrollimiseks.

Vaakumliini võib lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.

Vaakumregulatoor paigaldatakse lauta suunduvale torustiku. Vaakumliinil peab olema vähemalt üks vaakummeetrist, millel on paknudavate ja ajalolevat jälgimiseks ja kontrollimiseks.

Vaakumliini võib lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.

Vaakumregulatoor paigaldatakse lauta suunduvale torustiku. Vaakumliinil peab olema vähemalt üks vaakummeetrist, millel on paknudavate ja ajalolevat jälgimiseks ja kontrollimiseks.

Vaakumliini võib lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.

Vaakumregulatoor paigaldatakse lauta suunduvale torustiku. Vaakumliinil peab olema vähemalt üks vaakummeetrist, millel on paknudavate ja ajalolevat jälgimiseks ja kontrollimiseks.

Vaakumliini võib lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.

Vaakumregulatoor paigaldatakse lauta suunduvale torustiku. Vaakumliinil peab olema vähemalt üks vaakummeetrist, millel on paknudavate ja ajalolevat jälgimiseks ja kontrollimiseks.

Vaakumliini võib lahti puhastusseadmete käitamiseks. Selleks kasutatakse ka lahtise prindiga vaakumseadmeid.
aurustumistemperatuuriga aine (freoon, ammoniaak, vms). Kondensaatoris agens vedeldub eraldades soojust, aurustis agens aurustub neelates soojust. Aurusti on paigutatud keskkonda, mida on vaja jahutada.

Piima jahuti-säilitied toodetakse väga erinevates kujundustes ja kompleksustes:

- Kinnised – mahuti peal võivad olla ulatuslikk, suuremad sildused.
- Horisontaalsed – mahuti horisontaalne
- Vertikaalsed – mahuti vertikaalne, väiksemad avatud, suuremad suletud.
- Kahelüpsi – mahutab kaks päeva piima
- N neljalüpsi – mahutab kahe päeva piima
- Kompakteade – külmuti aurusti piimajahutis
- Labusseade – külmuti piima paigutatakse piimajahutis
- Kombiaseade – piimamahuti raamil on külmuti kompressor, kondensaator asub eraldi masinaruumis.

Arvestades hügieeninõudeid ei ole soovitatav kasutada lahtiseid, pealt kaanega suletavaid mahuteid. Ajakohased on kinnised seadmed, mille puhastamine toimub komplektis oleva piimajuhatusena. Viimale materiale mahutiel on lahk lai küljevigus, suuremad aga eraldi.

Töötades eraldab külmuti palju soojust. Kuna eesmärk on piima jahutamine ja jahutamise teise stadii säilitamine, siis on ongeline soojust kasutamiskiiruse mõju piimajuhatusena suure.

8.4.3. Lüpsiseadmed

Lüpsiseadmeid (joonis 16) liigitatakse lüpsiseadmete juhtimise, mahuti kogumise, teisaldatavuse, maksimaalse töökaupade, elektroniika kasutamise, automaatiseerituse ja tootmise tunnustest alusel. Lühijalgade lüpsineerimine on viimased aastad lahk esmakordsetest lüpsiseadmetest.

Lüpsiseadmed

- Paiksed
 - Asemetel
 - Lüpsiplatsil
 - Laudas
 - Lüpsikojas
 - Torusse
 - Lüpsiplatsi kuju
 - Rõngas
 - Nelinurk
 - Hulknurk
 - Lüpsimasinate teisaldamine
 - Kandes
 - Rippteel
 - Kärol
- Teisaldatavad
 - Laudas
 - Karjamaal
 - Lehmade
 - Kalasaba
 - Paraleel
 - Tandem

Joonis 16. Lüpsiseadmete liigitus

Ämbrisselüpsiseadmed võivad olla nii paiksed kui teisaldatavad. Paiksetel on vaakumseade paigaldatud masinaruumi, kantakse lüpsimasinaid. Teisaldatavad ämbrisselüpsiseadmed on ette nähtud väikese karjade lüpsmiseks. Nende vaakumseade on monteritud kärule, kuhu asetatakse ka üks või kaks lüpsimasinat.

Teisaldatavad ämbrisselüpsiseadmed on mõeldud väikese karja lüpsmiseks. Kärule on paigaldatud vaakumseade, elektrimootori toide saadakse järelohitiseva või rippteel liikuv kaabli abil. Kärul on koht ühete või kahele lüpsämbrile.

Ämbrisselüpsiseadmed komplekteeritakse tellija soovi kohaselt. Sobilik masinate arv sõltub lüpsiajest, piima jahutisse toimetamise viisist jt laudatoöde korraldusest. Seejuures arvestatakse, et mäksimaalne koormus ühete lüpsjale on kolm lüpsimasinat.
Ämbrisselüpsiseadme olulisemad puudused on füüsiliselt raske töö piima kandmisel jahtisse ja piima saastumisohutud laudaõhuga. Ämbrisselüpsiseadmete maksuminus sõltub läpsikannade arvust ning sellele vastava vaakumseadme võimsusest. Ühe läpsikannuga süsteemi orienteeruv hind on ca 13, kahe kannu korral vastavalt 30 tuh. kr.

Torusselüpsiseadmed (joonis 17). Torusselüpsiskernd on peamiselt suuremates lõasapidamisega lautades, kus piimaruum asub lüps ja piimatranspordiorganisatsiooni hoonete juures. Torusselüpsil on piimekandmise edastusvõime laiab, sest läpsi tagant ei jaa lauda rõhttleja hoonete juures. Torusselüpsiseadme kasutamisel liigub piim läpsii- ja piimamassist piimatorusse ja seda mõöda kogurisse, ust edasi pumbatakse piim mõõda transporditorustikku läbi kurna ja lahtijuhite piima jahtu-süüdlisse. Piimatoru kasutamine piima teisaldamiseks võimaldab:

- vabastada läpsja raskest füüsilisest tööst (piima kandmine);
- kindlustada piima kvaliteeti, kuna piim ei puutu kokku lauda õhuga;
- piima kiiresti ja valmisena juhtida;
- piimamassini tõhusalt puhastada;
- rakendada mitmesuguseid läpsimisvõimalusi jaoks, naiteks autonoomseid läpsiriist进货П Kiire läpsimisvõimalusi, sõprad ja insenerid võivad kasutada piima puhastamiseks kõrgehoolduslinaseid süsteeme, mille abil saab kiiresti ja efektiivselt puhastada piim.-puhastusseademed.

Torusselüpsil on ka mõningaid puudusi:

- läpsiuuring peab olema tugevam kui ämbrisselüps;
- ülalasuv puuter, piimatoru tõttu ja eriti piimatoru tõusude korral, mis on vajalikud lauda rõhttleja liikumiseks ja sõnulaste levitamiseks, tekib tugev puuter, mis mõjub halvasti udara tervilikule seisundile ja piima kvaliteedile;
- suur materjali- ja ajakulu piimamassini puhastamiseks;
- küülide kõrval on piima valmistusprotsess võimalik, kuna piimatoru kasutab piimalinni seadet, mida kasutatakse piima puhastamiseks.

Kahe esimese puuduse leevendamiseks kasutatakse läpsi ajaks allalastava piimatorustiku osad osad väravaid.

Eenlevat vaatamistades ei sobi torusselüps pikkadesse (60…90 m) mitmerealistesse lautadesse. Torusselüpsiseadmete põhilised koostisosad on vaakumseadme, piimamassinad, piimamassina puhastusseadmed ja piimatoru.

Vaakumseadmes on võimalik säilitada läpsimisvõim ega juhtida läpsimisvõim vastavalt nende ehitisele ja piimatoru konstruktsioonile.

Paljud kasutatavad torusselüpsisseadmed on poolautomaticad, kuna läpsja üleseandeks on ainult udara ettevalmistus, eellüps ja läpsiriistallikate allanekal. Lüpsiotsenssi juhtimiselt võetakse enamasti aluseks piimavoolu intensiivsuse ja aeg. Vastavalt nende väärtuste muutustele valib automaat sobilikud töötingimused: vaakumi taseme, pulsiiraguse, mismuhte, lüpsilüpsi alguse, alvõduga alguse, mis on võimalik, et piimatoru kasutab piimamassinat ja turustatud piimamassina juhtplokk sisaldab piimamassina, elektroneerilusud ja seadet. Läpsiuuring asendab piimamassina, mida kasutatakse piima puhastamiseks ja piimamassina, mida kasutatakse piima puhastamiseks.

Koguris lõpeb piima liikumine vaakumi all olevas liinis. Sealt edasi lõöb pump piima mõõda surveotoru läbi kurna jahutuspaaki või –vanni. Sageli paigaldatakse kogur lautia, sest piimalini viimine üle sööda- ja sönnikukäikude on keerukas ning kulukas. Sellisel juhul on surveotoru kullaltki pikk.

Platsilliüps (Foto 10). Võrreldes asemelüpsmisega (lüps toimub lehma asemel) saab piima higienenitaset kõrgena hoida ja läpsiks kuluvat tööaega vähendada sellega, et lehmi lüpsastakse spetsiaalselt sisustatud ruumis. Sellisel juhul ei manda läpisimasinaga lehma juurde, vaid lehm siirdab lüpsi ajaks ise stationaarsete seadmetega varustatud lüpsiühikolle. Lüpsiplatsil lüpsmist kasutatakse eelkõige lehmade lõastamata pidamisel. Siis on tegemist ühiskoruliselt, mis asub lehma asemest ligikaudu 0,8…1,0 m vóora madalamal. Lüpsiühend võib olla muudetava kõrgusega, et sobitada seda läpsioperatoori kasvule vastavaks. See loob lüpsjale võimaluse töötada dirge seljaga.

Üldjuhul on kanal lauda pörandast madalamal, lehmade asemide on võimalik tõsta kõrgemale. Sellisel juhul liiguvad lehmad platsile mõõda kaldtee, harva ka treppi mõõda.

Puhastusautomaadilt suundub lauhetoru läpiseadmesse, mille serva all on nisakamise suhtes pesupeadjaotid. Lüpiseadme kohtkindlate masinatega loob võimaluse seadmete maksimaalselt automaatseerimiseks ja piima kõrge kvaliteedi tagamiseks. Kaasaegsed läpiseadmed on allasuva piimatoruga, mis tagab stabiliseva vaakumi. Lühike piimalini ja efektiivne seadmete ning udar puhastamine kindlutasid läpihügieeni.

- kalasaba – lehmad seisavad lüpsiplatsil sõvendi suhtes nurga alla, üksteise suhtes paralleelsett, kuid 70…80 cm nihutatult;
- paralleel – lehmad seisavad lüpsiplatsil sõvendi risti ning üksteise suhtes paralleelsett.

Lüpsikanali juju järgi jaotatakse lüpsiplatsid: täisnurk-, kolmnurk-, hulknurk-, ring- ja röngasplatsideks.

Loomade vahetumisviisi järgi võivad lüpsiplatsid olla: individuaalse-, rühmiti- ja pideva vahetumisega.

Lüpsiplatside orienteeruv maksumus platsi tüüpide ja lüpsihoiata arvu lõikes on toodud tabelis 24.

Tabel 24. Lüpsiplatside orienteeruv maksumus

<table>
<thead>
<tr>
<th>Platsi tüüp</th>
<th>Kohtade arv</th>
<th>Maksumus, tuh €</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Tandem</td>
<td>2 x 3</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2 x 5</td>
<td>65</td>
</tr>
<tr>
<td>Paralleel</td>
<td>2 x 10</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>2 x 12</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2 x 24</td>
<td>150</td>
</tr>
<tr>
<td>Kalasaba</td>
<td>2 x 10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2 x 12</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>2 x 16</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>2 x 24</td>
<td>260</td>
</tr>
<tr>
<td>Karusell</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>250</td>
</tr>
</tbody>
</table>

Lüpsirobot (foto 11). Lüpsiplatside hulka võib avata ka automaatset robotlüpsiüsteemid, kus lehmade lüpsmine toimub lüpsiroboti abil ilma inimese osaotsusega. Lüpsiroboti kasutamise eelduseks on lehmade automaatne identifitseerimine. Lüpsirotsessi juhtimiseks kasutatakse piimavoolu kiirust, individuaalse väljalüpsi järgi reguleeritakse konkreetses lehma lüpsiroboti külastussagedust õöpaevas. Lehmatoimud lüpsmine toimub õöpearringelt, välja arvatud 1…2 tundi, mis kuluvad seadmete pesemiseks. Keskmiselt lüpsakte lehm 2,5…3 korda õöpaevas. Sellest tulenevalt tõuseb lehmade piimatooting 10…15 %.

Lehmade lüpsmine võib lüpsirobotiga laudas toimuda looma vaba tahte alusel või sunduslikult. Viimasel juhul pääsevad lehmad sööma ainult läbides lüpsiroboti koosseisu kuuluva automaatvärava („lüpsa enne“ tehnoloogia) või suunatakse lehm enne söömisalale ja sealdest taraava kaudu kas lüpsile või puhkealale („sööda enne“ tehnoloogia). Üldjuhul peetakse lehm lüpsirobotiga laudas aastaringelt sees.

Automaatsed lüpsiüsteeme toodetakse ühe- ja mitmekohaliste. Mitmekohaliste on üks robot tavaliselt kolme või nelja lüpsilatri kohta, kusjuures loomade udarate pesuks on spetsiaalne pesuboks. Ühekoaliste robotlüpsiplatsi kohta arvestatakse 60 lüpsihoima (koos kinnislehmadega ca 70). Nelja lüpsikohaga robotlüpsiplatsi kohta arvestatakse ca 160 lehma.

Piima jähtumiseks paigutatakse automaatse lüpsiaseadmega laudas enne põhipajutust eeljahutiki. See aitab põhimõju piima jäätumisele ja sealt taraava kaudu kas lüpsile või puhkealale. Mittekvaliteetne piim suunatakse seotud tõuse.

Robotlini piimaseadmete orienteeruv maksumus on esitatud tabelis 25.

Foto 11. Lüpsirobot
Tabel 25. Robotlüpsiseadmete orienteeruv maksumus

<table>
<thead>
<tr>
<th>Lehmade arv / Seade</th>
<th>Maksumus, tuh €</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>70 / 1 lüpsikoht</td>
<td>80</td>
</tr>
<tr>
<td>140 / 2 lüpsikohta</td>
<td>75</td>
</tr>
<tr>
<td>140 / 2 lüpsikohta, üks robotkäsi</td>
<td>140</td>
</tr>
</tbody>
</table>

8.5. Energia efektiivne kasutamine

Energia kasutamise efektiivsus veisefarmides sõltub eeskätt headest loomapidamistavast, loomapidamishoone konstruktsionist ning tehnoloogia ja seadmete valikust. Õige seadmete ja kütuse valik võimaldab vähendada ja kokku koida eksploatatsioonikulusid. Kokkuhoiumeetmete majanduslik efektiivsus sõltub konkreetsest olukorrast.

Soojusenergia kulu vähendamine. Soojusenergia tarbimine võib tihti osutuda põhjendamatult suureks. Kõige üldisemad tarbimise võimalused võib jagada kahte rühma:

- Organisatsioonilised. Organisatsioonilised meetmed (ei nõua investeeringuid) on kontroll soora vee kasutamise, uste ja akende põhjendamatu lahtioleku ja ruumide temperatuurigraafiku üle.
- Kaasaegsel tehnilisel tasemel olevate kuumutusseadmete ja konstruktsioonielementide (isolatsioonimaterjalide) kasutamine.

Ruumide küttekuulu vähendamise võimalused:

- Duširuumides on soovitav kasutada reguleeritavat põrandakütet.
- Olmeruumide kütmiseks kasutatavad elektrradiadiatorid tuleks asendada soovitavalt biomassiga köetava vesikeskkütesüsteemiga (elektrienergia kokkuhoid ca 95%).
- Ruumide kütmiseks on soovitav soojuspumba vahenduse kasutada piima jääksoojust. Piima jääksoojuse tšelikumaks ärakasutamiseks on sellises keskkütesüsteemis soovitav kasutada soojusakumulatsiooni paaki.
- Ruumide temperatuuri alandamine tõövälisel ajal.
- Valki otsirepide isolatsiooni kontroll ning vigade kõrvaldamine.
- Välistustehendamine ning suletuse tagamine (automaatsulgurid).
- Soojustatud lauda väljuvale õhukanalile soojuspumba paigaldamine.

Sooja vee tootmiseks energiakulu vähendamise võimalused:

- Kuuma vee tootmine vesikeskkütekasabil, kuju on võimalik juurde ühendada biomassil töötav katel või ka päikesepaneel (õige kütte valikul on tasuvus kire).
- Sooja vee tarbimise kontroll. Kohta see, kus sooja vett vajatakse periooditi ning vähe (nt. käte pesu), samuti üldkütteseadmetest kaugelt asemetsetesse vähese tarbimisega punktidesse, on otstarbekas paigaldada kiirektse voolikud.

Elektrienergia kulu vähendamine. Elektrienergia kulu vähendamise võimalused võib jagada põhimmõtteliselt kolme gruupi:

- Organisatsioonilised (ei vaja investeeringuid).
- Kaasaegsel tehnilisel tasemel seadmete kasutamine.
- Elektrienergia tarbimise mõõtmine ja analüüs.

Elektrienergia kokkuhoiu võimalused lüpsiseadmete juures on alljärgnevad:

- Sagedusmuunduriga juhtploki lisamine vaakumpumba juhtahelasse (näiteks lüpsiplatsil DeLaval VMS on tasuvusaeg 4,8 aastat).
- Regulaarne kompressori lekke puudumise ning töötundide arvu kontroll,
- Kuuma vee seadmete tootlikkus peab vastama vajadusele ning vett ei tohiks kuumutada optimaalsest kõrgema temperatuurini.
- Võimaluse korral võiks kasutada ühte vaakumpumpa kahe lüpsiseadme kohta.
- Elektrienergia tarbimist fikseerivate mõõturite paigaldamine suuremate tarbijate juurde (näiteks kompressor, vaakumpump), mis võimaldab operatiiviselt välja selgitada ebanormaalset rõõmu.

Võimalikud kokkuhoiumeetmed valgustusseadmete kasutamisel on:

- Päevavalguslampide kasutamine hõõglampide asemel (elektrienergia kokkuhoid ca 60 %).
- Valgustite tööaasta vähendamine kooskõlas akendest tuleva päevavalgusega.
- Valgustusseadmete regulaarne hooldus ja puhastamine (vähemalt kord aastas).
- Pinge ja sagedusega reguleeritavate päevavalguslampide kasutamine.
- Liikumisanduritega valgustite paigaldamine koridoridesse ja vähese kasutamisega ruumidesse.

8.6. Sõnniku eemaldamine laudast

Sõnniku laudasise kogumise ja eemaldamise tehniloogia valikul lähtutakse järgmistest seisukohtadest:

- sõnnikut tuleb koristada vähemalt kaks korda õöpäevas. Sagedane sõnniku eemaldamine laudast hoidlasse vähendab ammoniaagi emissiooni, samuti väheneb seadmete seost;
- seadmesist ei tohi loomi vigastada, häirendada seadmestiku häirendamisest, heitgaaside, mikrokliima parameetrite ja heitgaaside, mõjutasemest, laudapersonali tööttingimust.

Sõnniku käitlemise seadmed valitakse lähtuvalt toodetavast sõnniku tüübist, mis sõltub karja suurusest, pidevat seadmeid, allapanu liigist ja kogusest.

8.6.1. Mobiilset sõnniku eemaldamine

Mobiilsetest sõnniku eemaldamise meetoditest on Levinum traktor koos spetsiaalse saha ja lauplaaduriga laudast võimalik sõnniku koristada. Sõnniku eemaldamise laudast hoidlasse vähendab ammoniaagi emissiooni, samuti väheneb seadmete seost.

8.6.2. Kettkraapkonveierid

Kettkraapkonveieri kasutamine on tehnoloogia valikul, kuna sõnnikut saab lauda koguda ning siis kui sõnniku eemaldamine laudast hoidlasse vähendab ammoniaagi emissiooni, samuti väheneb seadmete seost. Kettkraapkonveierit kasutatakse kitsaste sõnnikurennidega laudades. Sõnniku eemaldamine kettkraapkonveierites kasutab mobiilsete seadmete võimalusi, mis võimaldab sõnniku eemaldamise laudast hoidlasse vähendada ammoniaagi emissiooni, samuti väheneb seadmete seost.
Joonis 18. Kettkraapkonveier

8.6.3. Lattkraapkonveierid

Joonis 19. Lattkraapkonveier

Lattkraapkonveieriga sõnniku eemaldamise süsteemi hind on ca 40…100 € looma kohta.

8.6.4. Skreeperseadmed

Skreeperseadmeid (joonis 20) kasutatakse laiade sõnnikukäikudega, peamiselt vabapidamisega lautades. Kasutatakse skreeperseadmeid, mille tööorganit veetakse lati, keti või trossi abil. Tööorganiks võib olla klapp- või tiibskreeper. Esimest tüüpi tööorganit kasutatakse allapanuta või vähese puistallapanu (saepuru, hekselpõhk) korralt. Kraabi kõrjus on kuni 200 mm.

Joonis 20. Sammskreeper

Skreereseadmete tööorganid võivad liikuda ka siis, kui loomad viibivad sõnniku- või söökäigus. Ohutuse tagamiseks on tööörganite liikumiskiirus töökäigul enamasti 0,04…0,08 m/s.

Skreereseadmeid kasutatakse enamasti vabapidamisega lautades, kus sõnnikuga saastub suur ala ning allapanu ei kasutata või kasutatakse minimaalselt. Sellest tulenevalt on ammoniaagi emissioon suhteliselt suur. Sõnniku optimaalne eemaldamise korral lendub aasta keskmiselt 5…10 % väljaheited lõmmastikust. Skreereseadmete kasutamisel ammoniaagi lendumine sõnnikuhoidlast väheneb (vt. p. 7.6.3.).

Tabel 26 on esitatud skreereseadmete orienteeruv maksumus sõltuvalt loomakohtade arvust laudas.

Tabel 26. Skreereseadmete orienteeruv maksumus

<table>
<thead>
<tr>
<th>Loomakohtade arv</th>
<th>Maksumus, €</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>100</td>
<td>12000</td>
</tr>
<tr>
<td>200</td>
<td>12000</td>
</tr>
<tr>
<td>500</td>
<td>180000</td>
</tr>
</tbody>
</table>

8.6.5. Vedelsõnnikusüsteemid

Vedelsõnnikusüsteeme (joonis 20) rakendatakse vabapidamisega lautades. Allapanu kasutatakse minimaalselt (saepuru, hekselpõhk, turvas) või ei kasutata üldse. Sõltuvalt lauda konstruktsioonist kogunevad loomade väljaheited pilupõranda või elusitega kasutatakse kanalisse. See võib olla valgkanal (sõnnik valgub välja pidevalt), paiskanal (sõnnik lastakse välja perioodiliselt) või uhtkanal (kanal on pidevalt väline). Lõmmastikusüsteemis Eesti vabapidamisega soojustamata või asetsetulostatud veiselautades on betoonpõrandadaga (võib olla kõik spetsiaalne kummimati) liikumiskäikudesse kogunenud vedelsõnniku suunnamine mobiilse seadme või skreeriga eemaldaduseks. Restiga kaetud ristkanalid suunatakse vedelsõnniku sõnnikuhaiglasse. Valgkanalid:

Valgkanalid. Valgkanalid on horisontaalse põhijaga. Väljavoolupoolses otsas on sõnniku soidmiseks vajalik väljamine pulikkanalisse. Sõnniku väljavoolavälimiseks võib kasutada ka palju kanalidesse sügavate aitab kaasa loomade liikumiseks sõnniku avamiseks ja puhkeala. Vegiimaks vedelsõnnikutööd on Eesti vabapidamisega soojustamata või asetsetulostatud veiselautades on betoonpõrandadaga (võib olla kõik spetsiaalne kummimati) liikumiskäikudesse kogunenud vedelsõnniku suunnamine mobiilse seadme või skreeriga eemaldaduseks. Restiga kaetud ristkanalid suunatakse vedelsõnniku sõnnikuhaiglasse. Valgkanalid:

Paiskanalid. Paiskanalid on poolringikujuliste sildidega. Valgkanalid on horisontaalse põhijaga. Väljavoolupoolses otsas on sõnniku soidmiseks vajalik väljamine pulikkanalisse. Sõnniku väljavoolavälimiseks võib kasutada ka palju kanalidesse sügavate aitab kaasa loomade liikumiseks sõnniku avamiseks ja puhkeala. Vegiimaks vedelsõnnikutööd on Eesti vabapidamisega soojustamata või asetsetulostatud veiselautades on betoonpõrandadaga (võib olla kõik spetsiaalne kummimati) liikumiskäikudesse kogunenud vedelsõnniku suunnamine mobiilse seadme või skreeriga eemaldaduseks. Restiga kaetud ristkanalid suunatakse vedelsõnniku sõnnikuhaiglasse. Valgkanalid:

Uhtkanalid. Uhtkanalid on ristkanalid hoonetes, mille kõik võetavad vedelikkanalid, mis on ühe ristkanalitööd otsas. Sõnniku soidmiseks võib kasutada ka palju kanalidesse sügavate aitab kaasa loomade liikumiseks sõnniku avamiseks ja puhkeala. Vegiimaks vedelsõnnikutööd on Eesti vabapidamisega soojustamata või asetsetulostatud veiselautades on betoonpõrandadaga (võib olla kõik spetsiaalne kummimati) liikumiskäikudesse kogunenud vedelsõnniku suunnamine mobiilse seadme või skreeriga eemaldaduseks. Restiga kaetud ristkanalid suunatakse vedelsõnniku sõnnikuhaiglasse. Valgkanalid:
sügavus on tavaliselt 0,9…1,2 m, laius kuni 1,5 m. Kanalis olevat vedelsõnnikut tuleb iga päev vähemalt üks kord segada. Selleks pumbatakse pumpla põhjast kanali lõppu eraldi toru abil vedelsõnnikut. Kanali pikkus võib olla kuni 90 m. Sõnniku eemaldamisel uhtkanalitest ammoniaagi emissioon suureneb.

Restpõrandate ja vedelsõnnikusüsteemidega lautades on ammoniaagi emissioon suur. Aasta keskmisena võib see ulatuda 10 %-ni ja enam väljaheitete sisaldavat lämmastikut. Ammoniaagi intensiivset lendumist põhjustab suur väljaheitete suurust, saksludes, regid, kus näiteks puhekaal, põrandad ja restid ning sõnniku kanalide suuravat pindala. Eriti suureks võib ammoniaagi emissioon kujuneda paiskanalite süsteemi korral, kuna pidevalt lisanduvate väljaheitete tõttu lämmastiku kontsentratsioon kanalites suureneb.

Joonis 21. Vedelsõnnikusüsteemid

Vedelsõnnikusüsteemide orienteeruv maksumus on toodud tabelis 27.

Tabel 27. Vedelsõnnikusüsteemide orienteeruv maksumus

<table>
<thead>
<tr>
<th>Süsteem</th>
<th>Maksumus, tuh €</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valgkanalid / paiskanalid</td>
<td>12</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sõltub hoidlate kaugusest ja arvust ning torustiku tüübit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uhtkanalid</td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sõltub hoidlate kaugusest ja arvust ning torustiku tüübit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.7. Heitkoguste vähendamise tehnikad veisekasvatuses

Käesolevas peatükis on käsitletud meetodeid ja tehnoloogiaid, mis võimaldavad vähendada intensiivses veisekasvatuses tekkivate keskkonnaohutlikke ainet sissetehnikua ja piirata nende keskkonda sattumist. Peamine tähelepanu on pööratud lämmastiku kadude, eelkõige ammoniaagi emissiooni vähendamisele. Valdkonnad, mille kaudu on võimalik vähendada keskkonnasaastet on järgnevad:

- Söömine. Söötade, eriti söödaproteiini kasutamise optimeerimine võimaldab vähendada väljaheitete ja selles sisalduvat lämmastiku kogust.
- Lauda sisekiilima. Lauda sistemperatuuri ja õhu liikumise kiiruse optimeerimine. Ühe või mõlema nimetatud parameetri alandamine vähendab ammoniaagi lendumist.
- Pidamistehnoloogiad (lauda konstruktsioon, laudaseadmed, sõnniku käitlemine). Ammoniaagi emissiooni alandavate teguriteks on väljaheitete suurust, aika vähendamine; optimaalse koguse allapanu kasutamine; optimaalne sagedus sõnniku eemaldamisel laudast hoidlasse; sõnniku füüsiliste või keemiliste omaduste muutmise, näiteks pH alandamine; materjalide kasutamine, mida on lihtne puhaastada jne.
- Toruotsa tehnoloogiad
8.7.1. Heitkoguste vähendamine lõaspidamisega lautades

Lõaspidamisega laudad on enamasti soojustatud, sundventilatsiooniga loomapidamishooned, kas kasutatakse peamiselt tahesõnniku tehnoloogiaid. Saasteainete eritumist vähendavad:

- Optimaalne söömine vastavalt loomade füsioloogilisele toitefaktorite tarbele. Optimeeritud söötmise tulemusena eritub looma organismist vähem väljaheiteid, mille toiteelementide sisaldus on madalam.
- Lämmastiku, eriti ammoniaagi lendumist vähendab sage (vähemalt kaks korda päevast) asemete puhastamine ja sõnniku eemaldamine laudast.
- Püsivas koguses allapanu kasutamine. Levinumateks allapanumaterjaliteks on heklipõhik, freesturvas ja saepuru.
- Laudainventari (asemete piirred jms.) ja konstruktsooniide (seinad, talad jms) puhastamine neile sattunud väljaheidetest vastavalt vajadusele.
- Regulaarne sõnniku eemaldamise süsteemi (kett- ja lattkraapkonveierid; skreeperseadmed) sõlmede puhastamine, tehniline kontroll ja vajadusele remont.
- Lauda ventilatsioonisüsteemi optimaalne kasutamine.

8.7.2. Heitkoguste vähendamine vabapidamisega lautades

Vabapidamisega laudad on enamasti soojustamata või osaliselt soojustatud, loomuliku ventilatsiooniga loomapidamishooned, kas kasutatakse poolvedel- ja vedelsõnniku tehnoloogiaid. Saasteainete eritumist vähendavad:

- Optimaalne söömine vastavalt loomade füsioloogilisele toitefaktorite tarbele. Optimeeritud söötmise tulemusena eritub looma organismist vähem väljaheiteid, mille toiteelementide sisaldus on madalam.
- Lämmastiku, eriti ammoniaagi lendumist vähendab sage (vähemalt kaks korda päevast) asemete puhastamine ja sõnniku eemaldamine laudast (ristkanalitest).
- Võimalus allapanu kasutamine.
- Laudainventari (asemete piirded jms.) ja konstruktsooniide (seinad, restpõranda liikumisaladel jms) regulaarne puhastamine neile sattunud väljaheidetest.
- Regulaarne skreeperseadme sõlmede puhastamine, tehniline kontroll ja vajadusel remont.
- Ammoniaagi emissiooni vähendavate preparaatide lisamine vedelsõnniku (vedelsõnniku pH regulaatorid, bakteritsiidsed preparaadid).
- Optimaalse öhuvahetuse tagamine laudas vastavalt välistemperatuurile ja tuule suunale.

8.7.3. Lenduvate saasteainete vähendamine nn. „toruotsa” tehnoloogiatega

Toruotsa tehnoloogia rakendamisel juhitakse ventilatsiooni kaudu laudast väljapumbatav öhk läbi spetsiaalsete filtrite. Filtrites seotakse lauda öhust olev lämmastik (ammoniaak). Toruotsa tehnoloogiad on kasutatavad ainult kontrollitava öhuvahetusega (sundventilatsiooniga) põhiliselt soojustatud loomapidamishoonetes, loomuliku ventilatsiooniga soojustamata lautadesse need ei sobi.

Keemilised märgpuhastid. (joonis 23) Keemilises märgpuhastis juhitakse laudast väljapumbatav saastunud öhk läbi absorbeerivaid vedelike sisaldava filtri. Peamiselt kasutatakse absorventidega lahjendatud vääv- ja soolhapet. Ammoniaak eemaldatakse laudähust keemilise reaksiooni tulemusena:

\[2 \text{NH}_3 + \text{H}_2\text{SO}_4 \rightarrow 2 \text{NH}_4^+ + \text{SO}_4^{2-} \]

Joonis 22. Biofiltrid

Joonis 23. Keemiline märgpuhasti

8.8. Lõhna vähendamine

Väljaheidetele (sõnnikule) annavad ebameeldiva lõhna paljud keemilised ühendid: lenduvad rasvhapped, alkoholid (indool, skatool, p-krestool jne), H₂S ja selle derivaadid, ammoniaak ning teised lämmastikühendid (amiinid ja merkaptaanid).

Väljaheidetega eraldub lämmastiku ja lõhnaainete kogust on võimalik mõjutada söödaratsiooni toitefaktori sisalduse kaudu. Tasakaalustatud ratsiooni söötmisel (suur proteiini kasutamise efektiivsus) on väljaheidete lämmastiku ja lõhnaainete kontsentratsioon madalam.

Väljaheidetest (sõnnikust) lähtuva ebameeldiva lõhna lendumist alandavad samuti:
- Efektiivne sõnniku käitlemine (õigeaegne eemaldamine loompidamishoonest, piisav kogus allapanu, puhtad loomad, laudainventaar ja –piirused).
- Sõnniku ladustamine kaetud (varikatusega) hoidlasse.
- Vedelsõnnikusüsteemidega lautades (valg-, uht- ja paiskanalid) õhuvoolude vältimine kanalites.

Elumajade vahetus läheduses paiknevat Sundventilatsiooniga loomapidamishoonest pärineva lõhna vähendamiseks (hajutamiseks) on järgmised tehnilised võimalused:
- Filtrid (vt. pt. 7.7.3.)
- Ventilatsioonisüsteemi väljalaskeavade viimine elumajade huves suhtes hoone vastasküljele.
- Õhu liikumist takistavate (suunavate) barjääride (hekid jms.) rajamine.
- Hajuiminge (kontsentratsiooni vähendamine ruumalaühikus) tulenevalt lauda konstruktioonist, paiknemisest ja ventilatsioonisüsteemi võimsusest. Olulisemad faktorid, millest oleneb saasteaine (lõhnaainete) kontsentratsioon ruumalaühikus on: saasteaine tekkimise intensiivsus, ventilatsiooni
maht, kaugus saasteaine tekke allikast ja saasteaine õhkupaiskamise allika (ventilatsioonikorstna) kõrgus maapinnast.

Loomuliku ventilatsiooniga loomapidamishoonetest lähtuva lõhna võrdlemiseks (hajutamiseks) on järgmised tehnilised võimalused:

- Ventilatsiooniavade avamine/sulgemine vastavalt tuule suunale ja tugevusele.
- Õhu liikumist takistavate (suunavate) barjääride rajamine.

8.9. Heitkoguste vähendamine hoidlates

8.9.1. Heitekoguste vähendamine tahesõnniku hoidlates

Lahustuvate toitaineid annavad ning pinna- ja põhjaveetest sattumise vältimiseks peab tahesõnnikuhoidlal olema lekkekindel põhi ja seinad (vt. pt. 5.3). Sõnnikukohidest väljavalguvad vedela fraktsioonid (uriin, sademete vesi) kogumises tuleb tahesõnniku hoidlaid varustada virtsamahutiga. Tahesõnniku hoidlaid on soovitatavad võrreldes kattava ja varikatusega. Varikatusega hoidlaid ja virtsamahutist võib ehitada väärsiks, kuna seda ei lisandu sademete vett. Tahesõnniku hoidlaid peab mahutama vähemalt 8 kuudrient.

8.9.2. Heitkoguste vähendamine poolvedel- ja vedelsõnniku hoidlates

Lõhna leviku vähendamiseks on soovitatava vedelsõnniku hoidlaid ehitamisel arvestada valitsevate tuule suunade ja tuule kaupade suuaidude suunades. Lõhnasaaste suhtes tundlike alade (eturajoonid) lendudes saasteainete hoidlades on soovitatav vedelsõnnikut segada, homogeniseerida ja ümberpumbata ainult sobiva tuule suuna korral. Saaste- ja lõhnasaanie te lendumist võimalik vähendada järgmiste võttemist:

- Söögivahetamine ja väärsed pindaallaga hoidlate rajamine, loobuda tuleks uute laguuntüüpi hoidlate rajamist. Mida piiratud on õhuga kontaktis oleva sõnniku haketa, seda väiksem on emissioon.
- Sõnnikuhoidlaid töötada mitte maksimaalse mahutavuse suhtes osalină. Osaliselt täidetud sõnnikuhoidlaid seinad toimivad õhu liikumist takistavate barjääridega. Mida väiksem on õhu liikumise (tuule) kiirus sõnniku pinnakahel, seda väiksem on emissioon.

Väiksema diameetriga poolvedel- ja vedelsönnikuhoidlale võib kaata kaasati- või plastkanaga, mille servad on kinnitatud hoidla seinte ülemistele äärtele ning pingutatud üle äärte rippuvate raskustega. Selline kaas tuleb varustada ventilaatsiooniametega, vajadusel ka avade, mille kaudu toimub hoidla täitmine/tühjendamine ja sönniku segamine.

Ujuvkatted. Väikese poolvedel- ja vedelsönnikuhoidlale varustamine ujuvkattega on lihtsaim variant lenduva saasteainete levikut parandada. Telkkatused tuleb võtta olla nii sönnikukihiga pinnale paigutatud kergel (ujuvast) materjalist kaas kui ka hekselpõhik, kergkruu, turvas, rapsiõli, plastikgraanuluid vms. Mõnedel materjaliide puuduseks on segamiseks või lahustumiseks võimalus vedelsönniku, mis halvendab selle kvaliteeti või on ohtlik karjatavatele loomadele. Suurtootmise tingimustes, kus sönnikuhoidlale (hoidlate) pindala on mitmete tuhande ruutmeetried, on võimalik telkkatteta katuse rajada, mis on tugevate rohkem hoidlastest luudavad.
Silo ladustamisel betoneeritud platstil tuleb tähelepanu pöörata eeskätt õigele kaldele (silomahla ärajuhtimine) ja veetiheda betoonpina saamisele. Silo maapealsel ladustamisel tuleb alusmaterjalina kasutada veekindlaid materjali (kilet) ja silomahla sidumiseks põhukühi, paksuses, mis välistab silomahla keskkonda valgumise. Nullsilo põllul hoidmisel on keelatud silorullide viimastamine.

Veisekasvatuses kasutatavat kuvisööda hoiukohad võivad põhjustada mõningast tolmu emissiooni. Selle aitab ära hoida hoidlate regulaarne ülevaatus ja korras, samuti granuleeritud söötade sõõtamine. Võimalikku tekkivat tolmuprobleemi vähendab ka mõnekuuliste vahegeaks 0,5 m pikkusest. Selleks kasutatakse spetsiaalset riistava kalseid. Võimalikku tolmuprobleemi vähendab ka kinniste kuivsöödavamalad varakasvatuse ja inspekteerima, võimalikku võimalikku kuvisööda söödaväärtuse langust ja bioloogilist saastumist.

8.10. Sõnniku töötlemine

Suurem osa veisesõnnikust viiakse orgaanilise väetisena mulda töötlemata kujul. Sõnniku töötlemine ettevõttes võib osutuda vajalikuks/otstarbekaks järgmistel põhjustel:

- Lõhnasaaste vähendamine. Sõnniku origamite toitainete viimamine võib vähendada sõnniku lõhna.
- Toitaine omastatavuse suurendamine. Sõnniku origamite toitainete viimamine võib vähendada sõnniku lõhna.

Enamikule juhtudel eeldab sõnniku töötlemine spetsiaalset tehnikat (tehnoloogiat) ja see asetseb viimata vajalikuks olemasolevate järjestustest põhjustel:

Tahesõnniku kompostimine

8.10.2. Vedelsõnniku separeerimine

8.10.3. Vedelsõnniku aeroobne töötlemine (aereerimine)

Aereeritud vedelsõnnikut kasutatakse edukalt põllu- ja rohumaade väetamiseks.

Vedelsõnnikut saab aereerida yhtedelt hoidlas. Sõltuvalt kasutatavast tehnoloogiast ning aereerimise intensiivsusest on energiakulu 1 m³ vedelsõnniku kohta 10...38 kWh.

8.10.4. Vedel-ja tahesõnniku anaeroobne kääritamine (biogaasi tootmine)

Anaeroobne kääritamine on bioloogiline protsess, mis toimub anaeroobses (hapnikuvabas) keskkonnas, mille käigus bakterid lagundavad orgaanilist ainet. Protessi produktideks on biogaas ja kääritusjääk (digestaat). Biogaas koosneb peamiselt metaanist (CH₄) 45-75% ja süsihappegaasist (CO₂) 25-55%. Sõltuvalt kasutatud toorainete koostisest on biogasiga ka väävelvesinik (H₂S), lämmastik (N₂), amauniik (NH₃), hapnik (O₂), vesinik (H₂), veeaur (H₂O) ja siloksaanid, mis tuleb biogasiga enne kasutamist eemaldada. Biogasiga kvaliteeti ja toodang sõltub tooraine koostisest ning biolagundatavusest. Teoreetiliselt on proteiini metaani tootlikkus 496 m³/tonni kohta, rasva puhul on see 1014 m³ CH₄/t ja süsivesikut puhul 415 m³ CH₄/t. Biolagundatavuse aste sõltub otseselt tooraine koostisest ja struktuurist ning seetõttu on biogaasi potentsiaali hinnangute puhul oluline tooraine koostise analüüsimine ja võimalus biogasiga potentsiaal mõlema määramine. Näiteks liinane anaeroobse kääritamine käigus ei lagune. Samas erinevad sühkrud, loomset ja tegutsetava rasva ja protseeminid on praktiselt 100% biolagundatavad.
Põllumajandusliku biogaasijaama võimalike toorainete nimistu on väga lai. Arvesse tulevad vedel- ja tahesõnnik, söödajäägid, nii kvaliteetne kui ka madala kvaliteediga rohusilo, 2 ja 3 kategooria loomset kõrvalsaadused, toiduainetööstuse biolagunevad jäätmelad jne.

Joonis 25. Märgkäärititel baseeruva biogaasijaama võimalik kontseptsioon (www.oekobit-biogas.com)

Tabel 28. Eesti piimafarmides toodetud vedelsõnniku metaani potentsiaalide varieeruvus

<table>
<thead>
<tr>
<th>Nr</th>
<th>KA%</th>
<th>OA%</th>
<th>m³ CH₄/t</th>
<th>m³ CH₄ / t OA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,77</td>
<td>74,29</td>
<td>9,68</td>
<td>273,17</td>
</tr>
<tr>
<td>2</td>
<td>5,30</td>
<td>74,43</td>
<td>11,16</td>
<td>282,78</td>
</tr>
<tr>
<td>3</td>
<td>5,32</td>
<td>75,03</td>
<td>11,01</td>
<td>275,75</td>
</tr>
<tr>
<td>4</td>
<td>5,32</td>
<td>74,86</td>
<td>12,86</td>
<td>322,79</td>
</tr>
<tr>
<td>5</td>
<td>6,45</td>
<td>78,62</td>
<td>11,20</td>
<td>220,84</td>
</tr>
<tr>
<td>6</td>
<td>6,45</td>
<td>78,62</td>
<td>11,79</td>
<td>232,46</td>
</tr>
<tr>
<td>7</td>
<td>7,08</td>
<td>82,20</td>
<td>16,07</td>
<td>276,07</td>
</tr>
<tr>
<td>8</td>
<td>7,30</td>
<td>77,83</td>
<td>11,59</td>
<td>203,90</td>
</tr>
<tr>
<td>9</td>
<td>7,84</td>
<td>83,84</td>
<td>11,36</td>
<td>172,93</td>
</tr>
<tr>
<td>10</td>
<td>7,99</td>
<td>76,31</td>
<td>19,36</td>
<td>317,54</td>
</tr>
<tr>
<td>11</td>
<td>7,99</td>
<td>76,31</td>
<td>19,27</td>
<td>316,10</td>
</tr>
<tr>
<td>12</td>
<td>8,17</td>
<td>80,38</td>
<td>16,33</td>
<td>248,61</td>
</tr>
<tr>
<td>13</td>
<td>8,67</td>
<td>81,83</td>
<td>13,25</td>
<td>186,78</td>
</tr>
<tr>
<td>14</td>
<td>8,87</td>
<td>84,67</td>
<td>13,88</td>
<td>184,92</td>
</tr>
<tr>
<td>15</td>
<td>10,50</td>
<td>78,60</td>
<td>24,48</td>
<td>296,60</td>
</tr>
<tr>
<td>16</td>
<td>10,50</td>
<td>78,60</td>
<td>25,29</td>
<td>306,47</td>
</tr>
<tr>
<td>17</td>
<td>11,02</td>
<td>82,51</td>
<td>25,54</td>
<td>280,91</td>
</tr>
<tr>
<td>Min</td>
<td>4,77</td>
<td>74,29</td>
<td>9,68</td>
<td>172,93</td>
</tr>
<tr>
<td>Max</td>
<td>11,02</td>
<td>84,67</td>
<td>25,54</td>
<td>322,79</td>
</tr>
<tr>
<td>Keskmine</td>
<td>7,62</td>
<td>78,76</td>
<td>15,54</td>
<td>258,74</td>
</tr>
<tr>
<td>Mediaan</td>
<td>7,84</td>
<td>78,60</td>
<td>13,25</td>
<td>275,75</td>
</tr>
<tr>
<td>Hälve</td>
<td>1,91</td>
<td>3,35</td>
<td>5,36</td>
<td>49,78</td>
</tr>
</tbody>
</table>
Biogaasi tootmisprotsessi jääkproduktiks on kääritusjääk (digestaat), mida kasutatakse sarnaselt töötlemata vedelsõnnikuga põldude väätamiseks. Kääritusjäägi suurimad erinevused võrreldes vedelsõnnikuga on järgnevad:

- Anaeroobse kääritamise käigus lagundatakse enamus kergest biologilagundatavast orgaanilisest ainest (rasvhapped, mono- ja polüsahhariidid), mis muundatakse biogaasiks. Lignotselluloosne biomass laguneb anaeroobse kääritamise käigus vaid osaliselt.

- Rasvhapete lagundami seetõttu haiseb kääritusjääk vähem kui kääritamata vedelsõnnik.

- Orgaaniline lämmastik muundatakse protsessis osaliselt ammoneiumlämmastikus, mis on väetamisel taimedele paremini omastatav kui orgaaniline lämmastik.

- Proteiini lagundamise ja sulfатаid redutseerimise käigus kääritusjääg on teisen võrra palunagud oluliselt pathogeenie või umbelhooneemete sisaldus kääritusjäägis.

- Võrreltes tõttlemata lägaga digestaadi hoiustamisel metaani emissioon väheneb.

- Kääritusjäägi pH on võrreldes lägaga kõrgem, seetõttu on katmata hoidlas hoiustamise puhul ammoniaga lendumine suurem.

Vedel-ja tahesõnniku ning muude toorainete mono- või kooskääritamisel baseeruva biogaasijaama tehnoloogiliste valikute detailseks kirjeldamiseks ja põhjendamiseks on käselaeva dokumendi maht piiratud (vt. käsiraamat „Biogaasi tootmine ja kasutamine“ ja konsulteeri erialaekspertidega). Seetõttu on esitatud vaid mõned sädeised soovitused.

Esmalt tuleb teostada detooline toorainete koguste ja koostise analüüs, mille alusel saab otsustada tehnoloogiliste lahenduste sobivuse üle. Põhimõttestel on vaja esitada ja saada vastused järgnevalt:

- Kas biogaasijaam on ühe ettevõtte sõnniku baseeruv või on tegu tsentraalse biogaasijaamaga?

- Kas toorainete koostise alusel on võimalik valida märg- või kuivkääritamise tehnoloogia?

- Kas ja millist substraadite eeltoötlustehnoogiat (mehhaaniline, bioloogiline, keemiline või ensümaatiline) on võimalik kasutada?

- Kuidas lahendatakse toorainete hoiustamine?

- Milline saab olema toorainete sisestamise tehnoloogia?

- Kas biogaasijaam rajada ühe- või kaheastmeline?

- Kas prosessi töötemperatuur peaks olema psührofiilses (10-20°C), mesofiilses (32-42°C) või termofiilses (48-55°C) temperatuurivahemikus?

- Kas kääritid on püstised (tõotuslõikukuid) või tavapärased madala membraankupliga kääritid?

- Kuidas lahendada kääritusjäägi hoiustamine vastamaks NH₃ lendumist?

- Millisel eesmärgil biogaasi kasutatakse ja sellest tuulevalt ka efektiivseim biogaasi puhastamise tehnoloogia?

- Sõltuvalt põllumaa olemasolust, logistikast jt faktorites on vaja soovitust tehnoloogialiste valikute osas, kuna kiik otsused on projektidehoidus ja sõltuvad kohalikest mõjuteguritest.

Nimetatud on vaid väike osa otsustest, mida on vaja biogaasijaama projekteerimise puhul tehada ning seetõttu ei ole käesoleva dokumendi antud ühtegi konkreetset soovitust tehnoloogiliste valikute osas, kuna kõik otsused on projektipõhised ja sõltuvad kohalikest mõjutusest.

Eraldi tuleb esile tõsta kääritusjäägi hoiustamise, järeleõttlemise ja kasutamise tehnoloogia valiku tähtsust. Kuna erinevate lisasubstraadite kooskääritamise puhul on toorainete sisaldus kääritusjäägis akumuleeruv, siis võib tekida olukord, kus kääritusjäägis on toitaineid rohkem kui oma maadele on võimalik laotada. Lahenduseks on kääritusjäägi järekkääritustehnoogiate rakendamine (kääritusjäägi sepaerimine tahkeks ja vedelfraktsiooniks või kuiva kääritusjääk, ammoniaga eraldamine kontsentreeritud ammoniumsulfida või kristallse struvidina jne), mis võimaldavad toitaineid fraktsioneerida või kontsentreerida.

59
Sõltuvalt biogaasijaama toorainete nimistust ja mahust, biogaasi toodangust, biogaasi kasutamise valikutest ja muudest faktoritest võib biogaasijaama investeering jääda vahemikku 1500–4500 EUR/kW elektri tootmise võimsuse kohta. Sarnasesse investeeringumahu suurusjärku jääb ka biogaasist biometaani tootest biogaasijaamal. 100 kW elektrotootmise võimsust on võrdne ~45 m³/tund biogaasi (CH₄ sisaldusega 53%) biometaani muundava tootmisüksusega.

Biogaasijaama rajamine lääg kätitluskompleksina veisekasvatusevõtte juurde on põhjendatud alates sellise suurusega farmidest, mis vajavad keskkonnakompleksluba. 400 lüpsilehmaga karja puhul on lehmade vedelsõnniku väiksed elektrotootmine arvestuslik võimsus ~60 kW, mis noorkarja väljaheidete ja söödajääkide lisamisel tõuseb ~100 kW. Väiksemate farmide puhul on vedelsõnniku töötlemine kasumlik ja on tihti teostatud rohkem. Vaheväärtus kasutamise võimalustest ümbervalitsetakse kõrgemate väärtustegavalmistust kasutamisele.

8.10.5. Vedelsõnniku keemiline ja/või bioloogiline töötlemine

Vedelsõnniku keemiliste ja/või bioloogiliste preparaatide lisamine eemärgiks on:
- Saaste- (NH₃, H₂S) ja rõõmahävitamine
- rõõmahävitamiseks kasutatavate bioloogiliste preparaatide töötlemine
- Toitainete sisalduse suurendamine
- Patogeensete mikroorganismide hävitamine.

Preparaadid, mida kasutatakse vedelsõnniku töötlemisel jagunevad:
-

Vedelsõnniku keemilise ja/või bioloogilise töötlemise efektiivsus sõltub kasutatava preparaadi täpselt döseerimisest ja ühtlastest segunemisest (segamisest).

8.10.6. Vedelsõnniku happestamine

Enamike sõnniku käitlemise operatsioonidega (hoiustamine, segamine, transportimine, laotamine jne) kasneb ammoniaga lendumise sõnniku pinnalt. Sõnnikust eraldava ammoniaga happestamise vähendamiseks on ehitatud mitmesugused meetmed: lämmastiku eritumise mõjutamine, rõõmahävitamine, rõõmahävitamise tõelise kaudu, rõõmahävitamine, rõõmahävitamise tõelise kaudu.

Ammoniaga lendumise vähendamiseks toodetakse spetsiifilisi ammoniaklämmastikku sisaldavaid bakterkultuurita, mida kasutatakse vedelsõnniku töötlemisel nõnda erivarustust mõjutamata.

Enamike sõnniku käitlemise operatsioonidega (hoiustamine, segamine, transportimine, laotamine jne) kasneb ammoniaga lendumise sõnniku pinnalt. Sõnnikust eraldava ammoniaga happestamise vähendamiseks on ehitatud mitmesugused meetmed: lämmastiku eritumise mõjutamine, rõõmahävitamine, rõõmahävitamise tõelise kaudu, rõõmahävitamine, rõõmahävitamise tõelise kaudu.

Ammoniaga lendumise vähendamiseks toodetakse spetsiifilisi ammoniaklämmastikku sisaldavaid bakterkultuurita, mida kasutatakse vedelsõnniku töötlemisel nõnda erivarustust mõjutamata.

Hapestamist võib läbi viia sõnniku käitlemise kolmes faasis – laudas, hoidlas või laotamisel.

Joonis 26. Hoiustamiseelne happega töötlemine

Tehnoloogia eelised:
- Vedelsõnnikule happe lisamine vähendab edasil käitlusel ammoniaagi heidet. Lauda tüübist sõltuvalt võib ammoniaagi lendumine väheneda 65 – 70%. Happega töödeldud vedelsõnniku korral lendub laudas 4% ja hoidlas 1% ammoniaagist. Happega töödeldud vedelsõnnik sisaldab töötlemata sönnikuga värrelidemad lämmastiku. Säljinud ammoniaagi arvel saab vähendada ostetava mineraalväetise kogust;
- veise vedelsõnnikut muutub homogeenusemaks ja seda on lihtsam käidelda (MTK, 2011).

Tehnoloogia puudused:
- Suured ehituskulud ja ekspluatatsioonikulud. Energiatarve võib suurenda seoses vedelsõnniku täiendava pumpamisvajadusega (MTK, 2011);
- Võib esineda probleeme loomuliku kooriku hoidmisega happega töödeldud vedelsõnnikul. Seadusega on nõutud, et vedelsõnniku hoidlamist oleks emissiooni vähendamiseks kaetud, seetõttu peab kasutama muid katteid (MTK, 2011). Kuna hapestamine vähendab lendumist, siis väheneb ka katmisvajadus;
- Ekspluatatsioonis olevas laudas saab nimetatud tehnoloogiat kasutada pärast üksikasjalikku ekspertiisi. Eelkõige tuleb hinnata materjalide kvaliteeti hapete talumise aspektist. Tehnoloogia kogumaksumus võib olemasolevate hoonete korral otsuda olemas oluliselt suuremahumise, sest paigaldamise käigus kaotab konstruktioonide ümberehitust (MTK, 2011);
- Tehnoloogia rakendamine võib tekita töötlemismehhanismite ümbruses ebameeldivat või närkset, samuti lõhnahenete intensiivistumist sönniku pumpamisel töötlemismahutisses ja happe lisamisel (MTK, 2011);
- Tehnoloogiat ei tohi kasutada lautades, kus vedelsõnniku eemaldatakse mehaaniliselt (MTK, 2011).

Hoidlas hapestamine. Hapestamise toimub vedelsõnniku segamise ajal. Vedelsõnniku ja happe segamine on ohtlik ja seepärast tuleb vedelsõnniku tase hoida vähemalt 1 m allpool hoidla üleservas. See on vajalik segamisel tekkiva tugeva vahutamise (vabanevad bikarbonaadid) ohjamiseks.

Hapestamine laotamise käigus (foto 13). Seade mõdob maad süvenemise ajal. Vedelsõnniku ja happe segamine on ohtlik ja seepärast tuleb vedelsõnniku tase hoida vähemalt 1 m allpool hoidla üleservas. Seo on vajalik segamisel tekkiva tugeva vahutamise (vabanevad bikarbonaadid) ohjamiseks.

Hapestamine laotamise käigus (foto 13). Seade mõdob maad süvenemise ajal. Vedelsõnniku ja happe segamine on ohtlik ja seepärast tuleb vedelsõnniku tase hoida vähemalt 1 m allpool hoidla üleservas. Seo on vajalik segamisel tekkiva tugeva vahutamise (vabanevad bikarbonaadid) ohjamiseks.

Vedelsõnniku hapestamiseks on kasutatud mitmesuguseid happeid ja sololasid: fosforhapet, vesinikkloriidhapet, väävelhapot, propioonhapet, lakaatapet, maarajääct ja. Taani ettevõtte Biocover AS andmeil on majanduslikult köige soodsam väevõl hapet kasutamine.

Vedelsõnniku hapestamine laudas maksab 250 loomühikuga 3,5 €/m³. Seadmete maksumuses kujuneb vastavalt 95 000–135 000 €, millele lisanduvad igapäevased kulud energiale, hooldusele, tööjõule ja hapetele (Infarm. 2007).

Laotamisaegne hapestamine SyreN tehnoloogiaga maksab keskmiselt 1,3 €/m³ (BioCover, publitseerimata).

Hapestatud vedelsõnniku laotamise eelised:
- Väävli kui taimetoitaine lisandumine mulda väävelhappe kasutamisel (Wesnæs jt, 2011);
- Süsihappegaasi emissiooni vähendamine, kuna mineraalse lämmastikväetise tootmise vajadus alaneb. (Biocover AS);
- Sekundaarse peenosakete lendumise vähendamine, kuna ammoniumnitraadi ja ammoniumsulfaadi teke ammoniagist on pärast (Biocover AS).

Hapestatud vedelsõnniku laotamise puuduseks on väevõl üleväetamise oht. Kui väävelhapet lisada 4,5 l/m³, siis vedelsõnniku laotamisnormi 30 m³/ha korral antakse hektarile üle 70 kg väävli.

Kindlasti tuleb kanda kaitsekindaid (lateks, nitriil, neopreel, PVC), silmade kaitseks hermeetilisi kaitseprille või täielikku ärmastist ning keemiliselt vastupidavat materjalist kaitsevahendeid. Paraku pole teada uuringuid hapestatud vedelsõnnikuga väävelhappelootamise pikaajalise mõjukuse shackel.

Happe lahjendamisel tuleb valada hapet vette, mitte vastupidi, kunas väevõlhapet seguneb veega tekkiv soojus põhjustab tormilist reaktsiooni, mille tulemusena võib segu anumast välja pritsida. Vältida tuleb kemikaali kokkupuudet metallidega, kuna kemikaal portsetud metalle ja väevõl hapet kasutamise korral antakse plahvatusohtlik.

Väävelhapat hoiustatakse tihedalt suletud silded ja nõuetekohaselt mõjutatud mullad, jahedas ja hästiventileeritavas ruumis, eraldi kokkupõhised ja väevõlhapet seguneb veega. Hapenõude kasutamine väävelhappelootamise korral antakse hektarile üle 30 kg/ha.
8.11. Sõnniku käitlustehnoloogiad
8.11.1. Vedelsõnniku ja kääritusjäägi käitlustehnoloogiad

Nimetatud peatükis käsitletakse vedelsõnnikut ja kääritusjääki ühiselt vedelsõnniku definitiooni all.

Vedelsõnniku vedu, laotamine põllule ja muldaviimine võib toimuda nii otseveo- (sama masin transpordib ja laotab) kui ümberpumpamistehnoloogiaga (vedelsõnniku transpordiks ja laotamiseks on erinevad masinad).

Nimetatud peatükis käsitletakse vedelsõnnikut ja kääritusjääki ühiselt vedelsõnniku definitsiooni all.

Vedelsõnniku vedu, laotamine põllule ja muldaviimine võib toimuda nii otseveo- (sama masin transpordib ja laotab) kui ümberpumpamistehnoloogiaga (vedelsõnniku transpordiks ja laotamiseks on erinevad masinad). Etteveo ja laotamismasinade ooteaegade vähendamiseks kasutatakse vaheladust põllul kas vastavates vahemahutistes, selleks kohandatud merekonteinerites või silindrilistes paakides. Vaheladustusmahutil võib olla pump, et vedelsõnnikut ettevedavast paakhaagisest ümberpumbata.

Vedelsõnniku muldaviimiseks kasutatakse sisestus- või sõbastusseadisega vedelsõnniku laoturit; või laotatakse vedelsõnnik lohis- või paisklaoturiga põllu pinnale ja segatakse muldaga täiendava tööoperatsiooniga.

Reeglina on vedelsõnniku laotud parile, mida tuleb perioodiliselt täitmas käia ja see tingib ajakadusid sõidule ning laadimisele. Lisaks kaasneb paride oluline muldade tallamine. Alternatiiviks on vooliktehnoloogia – vedelsõnniku pumbatakse pideva protsessina hoitlast või vahemahutistooli kaudu põllul töötavasse laoturisse. Laotamise ajal lohistab laotur sadade meetrite pikkuse või paisklaoturiga muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, kust väärt pumbatakse vedelsõnniku kaudu laoturisse.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.

Vooliktehnoloogia eeliseks on mulla väiksem tallamine, puuduseks on vooliku takistamatu liikumine ja nõudlik eelne muldaliitumise seadis, mida kasutatakse vedelsõnniku põllu servale vahemahutisse, mestiksestest vedelsõnniku laotamiseks.
(kui mulda on segatud eelkultuuri taimejäänustega). Vedelsõnniku laotamist kevadel tulekski alustada nendel põldudel.

Mullaharimine enne vedelsõnniku laotamist aitab vähendada ammoomiumlämmastiku lendumist 40–90% võrreldes harimata mulлага (Sommer ja Thomesen, 1993). Sarnaselt aitab vedelsõnnikul mulda imbuda sönniku ja mulla segamine. Näiteks vedelsõnniku laotamisjärgne segamine 60 mm sügavuses mullakiihas aitas vähendada ammoomiumlämmastiku emissiooni 60% (Van der Molen jt, 1990).

Kulude mõju tehnoloogia valikule 2012. aasta andmeil. Eesti Maaviljeluse Instituudi (EMVI) põllumajandustehnika ja tehnoloogia osakonna teadurid on koostanud mudeli laotamistehnoloogia kasutamise otstarbekuse hindamiseks koostamaks ammoomiumlämmastiku lämmamist 40–90% võrreldes harimata mullaga (Sommer ja Thomsen, 1993). Sarnaselt aitab vedelsõnnikul mulda imbuda sõnniku ja mulla segamine. Näiteks vedelsõnniku laotamisjärgne segamine 60 mm sügavuses mullakiihas aitas vähendada ammoomiumlämmastiku emissiooni 60% (Van der Molen jt, 1990).

*Arvustustest selgu, et kui ammoniaagi lendumiskadu ei arvestata, siis:

- võrreldes otseveoga on alates 3 km kaugusest odavam kasutada ümberlaadimisega tehnoloogiat.*
Tabel 3. Vedelsõnniku käitlemiskulu €/m³ sõltuvalt veoaugusest ning veo- ning laotamisvariantidest, arvestades ammoniaagi lendumiskadu (2012. a andmed)

<table>
<thead>
<tr>
<th>Veoaugus, km</th>
<th>Laotamisvariandid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paisk</td>
</tr>
<tr>
<td>Vedu laoturiga</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3.93</td>
</tr>
<tr>
<td>5</td>
<td>4.72</td>
</tr>
<tr>
<td>10</td>
<td>6.71</td>
</tr>
<tr>
<td>15</td>
<td>8.69</td>
</tr>
<tr>
<td>Vedu paakhaagistega</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3.79</td>
</tr>
<tr>
<td>5</td>
<td>3.80</td>
</tr>
<tr>
<td>10</td>
<td>4.09</td>
</tr>
<tr>
<td>15</td>
<td>4.44</td>
</tr>
</tbody>
</table>

Tabel 31. Vedelsõnniku käitlemiskulu €/m³ sõltuvalt veoaugusest ning veo- ning laotamisvariantidest, arvestades ammoniaagi lendumiskadu (2012. a andmed)

<table>
<thead>
<tr>
<th>Veoaugus, km</th>
<th>Laotamisvariandid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>paisk</td>
</tr>
<tr>
<td>Vedu laoturiga</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4.61</td>
</tr>
<tr>
<td>5</td>
<td>5.40</td>
</tr>
<tr>
<td>10</td>
<td>7.39</td>
</tr>
<tr>
<td>15</td>
<td>9.37</td>
</tr>
<tr>
<td>Vedu paakhaagistega</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4.47</td>
</tr>
<tr>
<td>5</td>
<td>4.48</td>
</tr>
<tr>
<td>10</td>
<td>4.77</td>
</tr>
<tr>
<td>15</td>
<td>5.12</td>
</tr>
</tbody>
</table>

Nii paisk- kui lohisooliklaoturi kasutamisel laotatakse vedelsõnnik maapinnale ja segatakse hiljem mullaharimisriistaga, näiteks rullrandaaliga mulda, kuid sellele vaatamata tekib laotamisjärgselt suur ammoniaagi lendumiskadu. Kui arvestada ammoniaagi lendumiskadu (tabel 18), siis:

- otseveo (laoturiga vedu) korral on odava in alates vedrupii seka segamislaotamine 1 km kauguseni, sealt kaugemale lõikeketas laotamine, kuid alates 10 km-st paisklaotamine;
- sõltumata veoaugusest on õmberlaadimise (ettevedu paakhaagisega) korral odavaim vedrupii segamislaotamine;
- võrreldes otseveoga on alates 3 km kaugusest odavam kasutada õmberlaadimisega tehnoloogiat.

8.11.3. Laotamiseks valmendamine hoidlas

Vedelsõnnikut segatakse tiivik või pumpseguriga. Segureid kaitatakse kas elektri- või saavad nad ajami traktori kättesaarel. Segureid võivad olla nii paiksed (enamasti elektriajamiga) kui ka teisaldataved.

Segureid saab liigutada tööpõhimõtte alusel kolmeks:
- mehaanilised – tööorganiks on põörlev tiivik (Foto 13);
• hüdraulilised – vedelsõnnikut pumbatakse hoidlasse tagasi (Foto 14);
• pneumaatilised – hoidl võhja juhitakse suruõhku.

Hüdraulilise pumpseguri eelseks on sama seadme kasutamine nii sõnniku pumpamiseks kui segamiseks.

Foto 14. Veise vedelsõnniku hüdrauliline segamine lagunis pumpseguriga (Foto: Kalvi Tamm)

8.11.4. Vedelsõnniku laadimine hoidlast

Täitmisjõudluse määrad kasutatav pump, täiteturustiku diameeter ja täiteturustiku pikkus. Sama kompressor-vaakumpumba korrals on paagi täitmisele kuluv aja erinevus 150 mm ja 200 mm imitorustiku läbimõõdu korral kahekordne. Enamkasutatavad ühendused vedelsõnniku pumpamisel on läbimõõduga 150, 200 või 250 mm. Kasutatakse ka tsentrifugaalpumpasid.

Pumbad võivad olla nii elektrilise ajamiga kui traktorilt käitatavad (foto 15). Traktorilt käitatavate pumpade jõudlus on vahemikus 14 000–23 000 l/min ning võimsustarve 49–135 kW.

Kui vedelsõnniku hoidlast põllule vedamiseks kasutatakse laoturit, siis saab pumpamiseks kasutada laoturi pumpa (foto 16).

Foto 15. Traktorilt käitatav pumpsegur vedelsõnniku hoidlast pakkautosse pumpamiseks (Foto: Raivo Vettik)

Foto 16. Vedelsõnniku pumpamine laoturi pumbaga (Vepi, 2010)
8.11.5. Vedelsõnniku vedamine hoidlast põllule

Vääksemate veokauguste korral transporditakse ja laotatakse vedelsõnnikut kas haagis-, poolhaagis- või liikurlaoturitega. Haagislaoturid on kahe- või kolmeteljelised, kogu massi kannab haagise veermik. Poolhaagislaoturite veermik on ühe- kuni kolmeteljeline, ka tandemina, suurt osa laoturi massist kannab tiisli kaudu traktori haakeseadis. Liikurlaoturitel on oma mootor ja juhtimissüsteem, manööverdamise lihtsustamiseks on tavaliselt kõik rattad juhitavad.

Pikema veokauguse korral kasutatakse vedelsõnniku kiireks põllule transportimiseks paakhaagistega veoautosid mahutavusega kuni 30 m³ (foto 17). Veoki (paagi) suurust piirab nii seadusandlus kui kohalike teede kandevõime. Eesti Vabariigis on maksimaalseks lubatud täismassiks 40 t ja teljekoormuseks sõltuvalt veermiku ehitusest kuni 11,5 t. Lisaks võib kohalik omavalitsus kehtestada teljekoormusele lisapiiranguid. Kevadise teedelagunemise ajal piiratakse teljekoormus sageli 6–8 tonnini. Et vedelsõnnik transpordi ajal paakhaagises ei kihistuks, on paaki võimalik paigaldada hüdromootoriga käitatab mehaaniline segur.

8.11.6. Vedelsõnniku ladustamine põllule

8.11.7. Vedelsõnniku laadimine põllul laoturisse

Vedelsõnnik pumbatakse vahemahutist või ettevedava paakhaagise paagist ümber laoturi paaki kas vahemahuti pumba (foto 18), ettevedava haagise pumba, traktori käitusvöllilt käitatava pumba (foto 19) või laoturi pumba (foto 20).
8.11.8. Vedelsönniku laotamine ja mulda viimine

Kvaliteetse vedelsönniku laotamise nõuded on laotamisnormi hoidmine, piki- ja pöökuhtlikkuse tagamine, kusujuures hälve normist ei tohiks ületada 10%, võimalikult maapinnalähedane ja suuretilgaline laotamine (ammoniumlämmastiku kadude vähendamine). Sõnnik ei tohiks sisaldada võõrkehi (näiteks heinapallide nööre).

Üle 300 loomühiku loomi pidav isik, kes kasutab loomapidamishoones vedelsönnikutehnoloogiat, või isik, kes lepingu alusel laotab 300-le loomühikut vastava koguse loomade vedelsönnikut, peab koostama enne vedelsönniku laotamist vedelsönniku laotamisplaani, milles tuleb näidata laotatav vedelsönniku kogus, laotamisala pindala, laotamisviisid, laotamisala põhjavee kaitstus, laotamisalal asuvad pinnaveekogud ja veearauded (Keskonnaministri määrus „Vee kaitse nõuded …”, RT I, 09.07.2013, 12). Vedelsönniku laotamisplaani kinnitab Keskkonnaamet kolme aasta aasta kohta. Vedelsönniku koguse suurenemisel tuleb taotleda laotamisplaani muutmist.

Kasvavate kultuurideta põllule laotatud vedelsönnik tuleb võimalikult kiiresti (soovitatavalt 4 tunni jooksul) mulda viia, sest esimese 12 tunni jooksul lendub suurem osa ammoniaagist. Vedelsönniku kasutamisel väätsena on ümbruskonnale keskkonnakasum ehitamiseks riskifaktoriteks vedelsönnikus sisalduvat lõmmastiku emissioon atmosfäeri ammoniaagina ja lõmmastiku oksiididena, samuti leostumine nitraatidena pinna- ja põhjavette. Esineb ka kaliumi ja fosfori ärakannet põllult, kui pinnaveel on võimalik voolata muldast ilgumata põllust ära.

Lõmmastiku kasuteguri suurendamiseks ja ammoniaga lendumise vähendamiseks peaks vedelsönniku laotamine toimuva jaheda, sambause idama, kus relatiivne õhuniiskus on kõrg. Ilm võiks olla tuuletu või nõrga tuulega. Rohumaal on parim aeg laotamiseks kolm aasta pärast karjatamist või niitmist. Lõmmastiku, moodilist ning sisestusseadmendit on arusaadavat vähendada taimiku vedelsönnikuga saastumist. Taimik toimib nõnevõrra ka tuule- ja päikesekaitsega vähendades gaaside eraldumist ning edastades niisutust sõnnikust.

Gaaside lendumise ja ebameeldiva lõhna leviku vältimiseks laotamisel on soovitatav kasutada seadmeid, mis viivad vedelsönniku ala peaaegu üle maapinnale, segavad muldaga või sisestavad vedelsönnikut muldast ilgumata põllust ära.

Vedelsönniku laotamisviisid on lauss- ja ribaslaotamine. Nende variandid on järgmised:

- laotamine põlull stickis kaht maapinnale;
- laotamine põlull stickis kaht maapinnale ja katusseadmet põllul;
- sisestamine mulda või rohukamarasse.

Pindlaotamiseks on võimalik kõik põhilised viisid: paisklaotamine, kus vedelsönnik paisatakse lauslaotamisena ohu kaudu põllul ja laohislaotamine, kus vedelsönnik jaotatakse lohishoolikute kaudu ribadele põllule pinna lähedalt tööaluse ulatuses.

Vedelsönniku mulda või rohukamarasse sisestamise mooduseid on samuti kaks: ühel juhul lõigatakse pinnasesse lõhed kuhu vedelsönnik suunatakse voolikutest kaudu ja teisel juhul pressitakse vedelik maasse survega. Lõhed lõigatakse nuga, piide või ketastega ja on tavaliselt 5–20 cm sügavad. Lõhed lõigatakse kas avatubs või suletakse surveratastes või -rullikutega.

Paisklaoturid koosnevad traktori hakates olevast vedelsönniku paagist ja paiskeseadist (paiskurid). Paisklaoturitel kasutatakse mitmesuguseid paiskureid (tabel 32). Lihtsaim neist on kuldplaadiga paiskur (deflektor), mille hulka sisalduv vedelsönniku joa ohu kaudu kallastades aga selliselt ammoniaga emissiooni (tabel 30). Selle variandi puhul sõltub laotamisühtlikkus oluliselt määral tuule tugevusest.
Tabel 32. Paiskurite tüübid (Frick, 1999)

<table>
<thead>
<tr>
<th>Paiskurite tüübid</th>
<th>Seadiste skeemid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaldplaadiga paiskur</td>
<td></td>
</tr>
<tr>
<td>Pendelkäisega paiskur</td>
<td></td>
</tr>
<tr>
<td>Kõrgel paiknev pendelkäisega paiskur</td>
<td></td>
</tr>
<tr>
<td>Püstsuunur</td>
<td></td>
</tr>
<tr>
<td>Kõrgel paiknev püstsuunur</td>
<td></td>
</tr>
<tr>
<td>Pendelpaiskur</td>
<td></td>
</tr>
</tbody>
</table>

Parema laotamisühtlikkuse saavutamiseks on paiskeseadmeid täiustatud. Paiskesuuna muutmisvõimalusega paiskuriga laotamisel kasutatakse mehaaniliselt või elektriliselt liigutatavaid laotamisüüse või suunureid, mis edasi-tagasi võnkudes jaotavad vedelsõnnikut kahel poole.

Mitme paiskuri korral on need paigutatud maapinna läheidale poomile, et vähendada vedelsõnniku õhus läbimise teekonda ja seeläbi gaasiliste ühendite lendumist.

Vedelsõnniku paisklaotamisel on rida puudusi:

Foto 21. Püstsuunuriga paisklaotur
(Foto: Raivo Vettik)
• suured lämmastiku kaod ammoniaagi lendumise tõttu;
• intensiivne lõhnainete emissioon;
• ebaühtlane laotamine, doseerimise tõlilikus;
• probleemaatiline on kasvavate taimede, eriti rohumaade väetamine, kuna sõnnikuga saastunud taimedest ei ole võimalik valmistada kvaliteetset silo (heina), samuti väheneb sellise taimiku sõõdavus karjatamisel või haljassõõdama.

Vedelsõnniku paisklaotamine sobib teraviljapõldudele, kus põhk on peenestatud ja tagastatud. Ilmastik peaks olema jahe, tuulevaikne ning uduine. Kindlasti tuleb selliselt laotatud vedelsõnnik võimalikult kiiresti pinnasesse segada.

Väga madala kuivainesisaldusega (lahjendatud) vedelsõnniku paisklaotamise erivormiks on laotamine vihmmutussüsteemidega. Meetodi rakendamiseks peavad vihmutsutavad alad asuma sõnnikuhoilida lähedal (maksimaalselt 300 m). Piisavalt madala kuivainesisaldusega vedelsõnnik on harilikult suurtes lagoon-tüüpi sademetele avatud hoidlates, samuti hoidlates, kuhu juhitakse laudaseadmete ja inventari pesu- ning territorialmilt kogutud sademetsesest sademest.

Lohislaoturid koosnevad vedelsõnniku paagist, jagurist ning voolikutest. Voolikud on kinnitatud ühtlaste vahedega (20–30 cm) poomile (foto 22), nende alumised otsad lohisevad maapinnal. Levinumaks lohislaoturi tööala on 12 m. Kahe jaguriga lohislaoturi töölaus võib olla kuni 36 m. Lohislaotur suunab vedelsõnniku vahetult mulla pinnale ja enamasti jäävad taimede kõrgemalasuvad lehed puhata. Sõltuvalt taineridade ja voolikute omavahelisel paiknemisel võivad siiski madalamad taimed jääda voolikutest väljuva sõnnikujoa alla. Mõnel juhul võib voolikuots tõsta sormused edela- ja edelalähedale ja vedelsõnnik sattuda ka kõrgemalasuvatele taimistlehtedele. Tänu kiirele kontaktile mullaga on ammoniaagi lendumine võrreldes paisklaotamisega oluliselt väiksem.

Meetod sobib nii põllu- kui rohumaade ja ka teraviljade ning rapsi kasvuaegseks väetamiseks. Kasvavatele taimedele laotamisel ei tohi taimiku kõrgus ületada 30 cm. Ettevaatlik tuleks olla sild valmistamiseks ja karjatamiseks planeeritud rohumaade väetamisel, kuna esineb mõningast taimede saastumist sõnnikuga. Tulenevalt seadme laiustest ei sobi see väikestele, ebakorrapärase kujuga ja künklikele põldudele.

Düüsidega lohisaoturid on põhimõtteliselt samased lohisaoturitega. Pöhlirivenuseks on voolikute kinnitamine metallpiidele, mis väldib voolikute laotamise ajal õhukuikkimist ja hoiab nende otsete vahekaugused võrdsema, tagades seega parema põikülvliikumise suurendamist (foto 22). Voolikud võivad olla kinnitatud ka klaasplastist varrastele, mis võimaldavad külgsuunalist liikumist. Voolikute otstes on spetsiaalsed düüsid, mis suunavad sõnniku vastu mulla pinnale ja ka tipusel juhtkeel. Voolikutest väljuva sõnnikujuua alla võib voolikute otsetest voolikute lehekülgede kaudu rajata. düüsid on taimedest kõrgusel esinedest valida ja käsitletada. düüsid võivad eeldada juhiilist kõrgust ja võimaldada kiiremat ja tõhusamat taime veekogumist.

Seadis sobib nii põllu- kui ka rohumaade (kasvavate taimede) väetamiseks. Kasvavatele taimedele laotamisel peaksid taimed olema vahemalt 8 cm kõrgused. Taimedest maksimumkõrgus on sama mis tavalise lohisaotamise korral.
Pindmisel laotamisel sõbustamisega ehk segamislaotamisel suunatakse vedelsõnnikoolikute kaudu põllu pinnale ja segatakse sfääriliste ketaste või C-piidega mulla pindmisesse kiht 3–8 cm sügavusele. Sellised lahendused sobivad ka laia reavahega (45–100 cm) kasvatatavate kultuuride (nt mais) kasvuajakorral.

Külvreelse mullaharimisel kasutatakse vedelsõnnikulaoturi paagi taha haagitud tükikutööriist või kergrandaali paigaldatud laotamisseadiseid.

Ketasseadised jagunevad:
- 1-kettalised, võivad olla erineva läbimõõduga, keskseks on 6–10 cm kalduseid või kaldu ning vedelsõnniku voolikult kaudu (foto 25);
- 2-kettalised, lõikavad mulda V-kujulise lõhe (foto 26);
- 1-kettalised koos V-kujulisel lõhet moodustava kiiluga (foto 27).

Sisestuslaoturid sobivad nii põllu- kui rohumaadele (kasvavate taimede) väetamiseks. Täpse doseerimise korral taimedest saastumist sõnnikutegi ei esine. Ammoniaagi lendumine on tagasihoidlik. Sisestuslaoturid ei sobi väga kivistele põldele ning rasketele muldele, kuhu vajaliku sügavusega lõhe lõikamine on probleemlik või isegi võimatu.

Sulglõhe-sisestuslaoturid. Töösügavuse järgi jagunevad need laoturid:
- madalale, 5–10 cm muldavii, (foto 28);
sügavale, 15–20 cm muldaviivad, lõhed tehakse enamasti kas hanijalg- või kobestuskäppadega, käppade vahekaugus 25–50 cm (foto 29).

Iga riba harimine toimub viie üksteisele järgneva tööorganiga:

- tähikkettad – kaks sügavushoidikuga tähikketast eemaldavad riba kohalt taimelöinud;
- lõikeketas – hambulise servaga lõikeketas teeb pinnasesse sisselöike riba servas;
- kobestus/väetamiskäpp – sellega kobestatakse muld soovitud sügavuselt. Vedelsõnnik suunatakse käpa tagant pinnasesse;
- lainelise tööpinnaga kettad/lainekettad – kaks lainelise tööpinnaga ketast moodustavad peeneks murendatud mullast valli;
- tiendursullid – kaks v-asetusega tiendursullid vormivad külviks hästi ettevalmistatud pinnase.
Survelaotamisel (foto 31) pressitakse vedelsõnnik kuni 5 cm sügavusele pinnasesse kuni 13 atmosfäärise rõhuga. Tööseadisteks on kõrgsurvet taluvad jaotuskambrid, mis tööasendis libisevad maapinnal, transpordiasendis tõstetakse üles. Kambrite alumistel kõlgedel on avad, mille kaudu kõrgsurvepumbast tulev vedelvääsis pihustatakse mulda. Avade juures on pöörlevad noad, mis tekitavad pulserivaa joa ja hoiaid väljalaskeava puhtana. Seda moodust saab kasutada madala taimestiku ja pinnakivideta põldudele.

Survelauturi kasutamisel sõnniku muldaviimiseks kasutatud surve tahab mullast välja pääseda ja surub osa vedelsõnnikut maapinnale tagasi.

8.11.9. Laotamistehnoloogiate võrdlus

Vedelsõnniku laotamisel kasvava kultuurita maale onlevunud järgmised tehnoloogiad:
- paisklaotamine ja sellele järgnev mullaharimine;
- laotamine vahetult põllu pinnale ja sellele järgnev mullaharimine;
- segamislaotamine;
- sisestuslaotamine.

Vedelsõnniku laotamisel kasvava kultuuriga maale (s. h. oras või rohumaa) on levinaid järgmised tehnoloogiad:
- paisklaotamine;
- laotamine vahetult põllu pinnale;
- sisestuslaotamine;
- paisklaotamine;
- laotamine vahetult põllu pinnale;
- sisestuslaotamine;

Paisklaotamine põhjustab olulisi keskkonnaprobleeme ning selle korral ei ole tagatud laotamiskoguse ristsuunaline ühtlikkus. Kuigi meetodi eelisteks on suur tootlikkus ja masina lihtsusest tingitud väike soetusmaksumus, võib väärtalt toimides võtta ammoniaagi lundumise tõttu kuni 70% lämmastikust ja tekitada olulist lõhnsaastet. Samuti on võimalik oluline vedelsõnniku ärakanne põllult, kui pillivoolab reljeefi ja pinnapinna omaduste koosmõju tõttu võivad põlled ausa imumata. Kuna paisklaotamisel läbib vedelsõnnik märkimisväärse teekonna õhus, siis mõjutab ilmastik nii töölaiust kui ristsuunalist laotamisühtlikkust. Tugev ja puhuline tuul tuul tuikatalab nemad, tugev vihm vähendab osiste lennuauast.

Eeltoodud probleemid leevendab veidi mitme paiskuriga laotamispoomi kasutamine. Toitainete kasutamine efektiivsus jääb ka selle puhul olulisel määral sõltuvalt edasistest tegevusest. Kui sõnnik jääb kauaks põlilinnale, on toitainete kättesaadavuse hea ja sellest põhjustatud keskkonna kahjustumine paranemas. Eeltoodud põhjustel on paisklaotamine regelina ebasoojitav ja tuleb võimalik kõrvaldada, ühtlates pöldudes, kui laotamisele järgneb vahetult mullaharimine ja ilmastikuolude on soodsad (jahe, kõrge õhuniiskus, tuulepuhast, sadamad).

Kasvavate taimedele taimedele on võimalik anda vedelsõnnikut ka pealtväetisena, ei saa paisklaotamise tehnoloogiat kui toitainete kasutamise rühmitama kui kasvavate taimedele. Kui paisklaotamine läbib vedelsõnniku jaoks kogemust, on toitainete kättesaadavuse tõus tõlgitud kasutamisest rikkalikku, mis võib oluliselt vähendada keskkonna kahjustamist. Eeltoodud probleemide leevendab laotamisel paiskuriga põlledes.

Kui laotatakse taimikule, siis tuleb töötamisel jälgida taimiku vigastamise põhjuste - rehvidega tallamine, laotamisseadise lohisemine taimikus - ulastust. Liikumissuuna validik on taimedele ohutuks ja mitte lehtedele. Eriti suur on probleem laotamisele järgneva kuiva perioodi korral, kui laotamise ja saagikoristuse vahel ei esine piisavalt sademeid, mis uhkseid taimed puhtaks.

Sisestuslaotamine ehk laotamine vedelsõnniku muldaviimisega on oluliselt keskkonnasõbralikum vedelsõnniku kasutusviis. Selleks kasutatavad seadised (kiiljalased, vedrupii, käpad, ketasseadised, lõheavardid) küll tõstavad seadme maksumust, vähendavad toitlikkust ja suurendavad veoõhjave vajadust, kuid vedelsõnniku paigutamine taimenurte ja mullaelustiku vahetusse lähedusse võimaldab taimedel toitaineid hästi ärakasutada.

Peamiseks puuduseks on vedelsõnniku ristsuunalise paiknemise perioodilisus - vedelsõnnikut sisaldavad tsoonid paiknevad vaheldumisi seda mittesisalduvalt, sõltuvalt kasutatavast seadisest saab vedelsõnnikut paigutada 5–15 cm sügavusele (eriseadistega ka sügavamale). Mida sügavamal seotakse sõnnikut paigutada, seda suurem on veoõhu vajadus ja kivises maas paiknevate purunemise ohutus.

Laotamine mulda segava seadisega on vedelsõnniku kõige keskkonnasõbralikum laotamise viis - selliselt on minimeeritud nii toitainete lõhderemise teel kui vedelsõnniku äraõhkemisse põllult pinnaveega. Puuduseks on kasutatava tehnikna kõrge maksumus ja suur veoõhu vajadus. Olulise eelise annab kahe operatsiooni - mullaharimise ja vedelsõnniku laotamise ühitamisest tekkiv ajaline kokkuhoid.

Nende masinate puhul on vedelsõnniku laoturite liidetud mullaharimise põimseade. Levinuim on rullrandaal. Vedelsõnnik antakse kas esimese kettarea ette või kahe kettarea vahele. Selle tulemusena seguneb vedelsõnniku hästi mullaga, moodustamata vedelsõnnikut külllastunud ja seda mittesaanud tsoonite.

Eriti hästi sobib selline meetod sügisesse (ja teadud tingimustel ka kevadiseks) mullaharimiseks, mille käigus antakse mullale ja taimedele vajalik baastoitainet kogus vedelsõnnikuga. Meetodi puuduseks võib lugeda sobimatust taimedel kasvuajal lähenedes, sest mullaharimisseade hävitab taimiku.

Tabel 33. Vedelsõnniku laoturite orienteeruv maksumus

<table>
<thead>
<tr>
<th>Tüüp</th>
<th>Maksumus, eurot</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Vedelsõnniku paak, vedelsõnniku pumbaga</td>
<td>8 400</td>
<td>87 000</td>
</tr>
<tr>
<td>Vedelsõnniku paak, õhupumbaga</td>
<td>10 000</td>
<td>79 000</td>
</tr>
<tr>
<td>Lohisvooliklaotusseade paagi taha</td>
<td>9 300</td>
<td>42 000</td>
</tr>
<tr>
<td>Ketastega avalõhesse sisestuslaotuse seade paagi taha</td>
<td>10 500</td>
<td>35 500</td>
</tr>
<tr>
<td>Pidega sulglõhesse sisestuslaotuse seade paagi taha</td>
<td>8 200</td>
<td>21 000</td>
</tr>
</tbody>
</table>
Joonis 27. Veise vedelsõnniku käitluskulud alates hoidlas segamisest kuni mulda viimiseni erinevate tehnoloogiate korral kui põld on hoidlast 3 km kaugusel. Arvesse on võetud ka ammoniaagi lendumisega seotud lämmastikukadu. Sõnniku NPK sisaldus on selles arvutuses 3-0.6-2.1.

8.12. Tahesõnnik
8.12.1. Tahesõnniku laotamise agronoomilised põhimõtted

Tahesõnnikut võib laotada kevadel ja sügisel. Kevadine tahesõnniku laotamine on Eestis käesoleval ajal probleemiline. Sõnnikut ei tohi laotada külmnud maale ja lumele (Veeseadus, RT I 27.06.2013.3) . Kuna kevadel mulla agrotehnilised omadused muutuvad kiiresti (optimaalne külviaeg on lühike) siis ei jätke tahesõnniku nõutekohaseks laotamiseks ja muldaviimiseks aega. Üheks tahesõnniku kasutamise võimaluseks kevadel on selle laotamine ja mulda viimine uutel rajatavatel rohumaadel.

Tahesõnnikut kasutatakse laialdaselt kesade väetamiseks. Kesade harimise perioodil on ööpäevane keskmise ohutemperatuur veel suhteliselt kõrge, seetõttu tuleb sönnik kiiresti mulda viia vähendamaks toitainete, eriti ammoniaagi kadusid.

Parim võimalus tahesõnniku kasutamiseks on sügisel. Võimalikult hilja (enne 1. novembrit) teostatud sügiskünni alla laotatud tahesõnnikut on toitainete kaod minimaalsed (joonis 28).

Joonis 28. Lämmastiku kadu aastaaegade lõikes

Täpsema väetustulemuse saamiseks tuleb enne sönniku põllule viimist teha sellest keemiline analüüs põhiliste toitelementide sisalduse selgitamiseks. Kuna tahesõnnik on väga ebaühtlase koostisega ja homogeniseerimine (segamine) on võimatu, siis on soovitav võtta analüüsimeiseks rohkem kui üks proov.
8.12.2. Tahesõnniku käitlustehnoloogiad

Orgaaniliste väetiste toiteainete sisaldus on võrreldes mineraalväetistega suhteliselt madal ja seetõttu on orgaanilise materjali vajadus pinnaühikule märkimisväärsest suurem. Samas on keskkonnanõuetega lubatud toimeaine kogused hektarile piiratud. Sageli tuleb sönnikut vedada hoidlast asuvatele põldudele, mis tingib tehnoloogilises skeemis suuremad hoiustamis-, laadimis- ja veomahud kui mineraalväetiste käitlemisel. Sõltuvalt põldude kaugusest ja suurusest eristatakse otseveoga ja etteveoga tehnoloogiat. Otseveoga tehnoloogiat kasutatakse juhul, kui põld ei ole hoidlast väga kaugel. Sel juhul on tahesõnniku käitlusetaappideks:

- hoiustamine ettevõtte hoidlas;
- laadimine hoidlast laoturisse;
- vedu laoturiga hoidlast põllule;
- laotamine.

Kui põld asub hoidlast kaugemal ja ettevõttes ei ole piisavalt sönniku laotureid, siis on otstarbekas kasutada etteveoga tehnoloogiat. Kuna taheda materjali veokilt laoturisse laadimine on tüklik, siis see kallutatakse põllule auna. Sageli veetakse tahe orgaaniline väetis põllule aunasses, kui on selleks sobivaim aeg ning laotamine toimub laotamiseks sobivaimal ajal. Tahesõnniku käitlusetaappideks on:

- hoiustamine ettevõtte hoidlas;
- laadimine hoidlast veokisse;
- vedu veokiga hoidlast põllule;
- aunastamine;
- laadimine aunast laoturisse;
- laotamine.

Tänul vaheladustamisele aunas väheneb väetise laotamiseks sobival ajal ajakulu vedudele. Samas hoitakse otseseel kulusid kokku täiendava laadimise arvelt põllul. Arvestada tuleb ka tahesõnniku aunastamisele seatud piirangutega (Veekaitseõnnetused…, RT I, 09.07.2013, 12) ning märkimisväärsete toiteainete kadudega.

Mõnda liiki tahedate orgaaniliste väetiste kleepumise ja paakumise tõttu laoturi seintele ja detailidele on oluline ka masinate puhastamine pärast nende kasutamist.

8.12.3. Tahesõnniku laadimine

Taheda orgaaniline väetise laadimiseks sobivad ratas- (Foto 32), teleskoop- (Foto 33), ekskavaator- ja traktori esilaadurid (Foto 34).

Piidega haaratsid ja hargid (Foto 34 ja 37) sobivad paremini pikka põhku sisaldava sönniku laadimiseks. Samuti sobivad need muude pikki kiude sisaldavate tahkete orgaaniliste väetiste laadimiseks. Ülejäänud tahedate orgaaniliste väetiste laadimiseks sobivad paremini kopplaadurid. Laadimisjõudlus on suurem piisulguriga kopplaaduriga laadimisel (Foto 35).
8.12.4. Vedamine hoidlast põllule

8.12.5. Vaheladustamine põllul

Haritaval maal on aunas lubatud hoida vaid tahesõnnikut (k.a ≥ 20 %) mahus, mis ei ületa ühe vegetatsiooniperioodi kasutuskogust.

Nittraaditundlikul alal on kuni 50 m ulatuses veepoolt või karstilehti servast keelatud sõnniku hoidmine sõnnikuauanas, kui kaitse-eeskirje teisiti ei sättesta (Veeseadus – RT I, 27.06.2013, 3.).

Foto 35. Piisulguriga kopp (RTC Tehnika, 2012)

Foto 36. Piisulguriga hark (Foto: Raivo Vettik)

Foto 37. Ülestõstetav laotusseade võimaldab laoturi kiiremat tühjendamist (KSCC, 2012)

Foto 38. Tahesõnnikulaotur on monteeritud veoautole (Bergmann, 2012)

Katmata sõnnikuunast (Foto 39) võib sedemetevee ja väljanõrguva virtsa tõttu leostuda kuni 45% kaalumist ning 10% fosforist. Katmata sõnnikuunast võib lenduda 25–30% lämmastikust, kaetud aunast kuni 20%.

Sõnniku ladustamine aunas ei vabasta mahutavusega sõnnikuhoidla omamise/rajamise nõudest.

Sõnniku hoidmise põlluunas on põhja- ja pinnavee saastumise vältimiseks soovitatav (Keskkonnaamet, 2011):
- sõnnikvedelike sidumiseks rajada sõnnikuauna alus vett imavast materjalist (turvas, põhk, jms);
- sõnnikuunava asukohaks ei sobi karstialad ja kaitsmata põhjaveega alad; seda eriti kui läheduses (500 m) paikneb maapinnalähedased veekindlused veekindlastele (või) geotekstiili ärade või nõrmikast materjalist vettpidava alus.

Sõnniku hoidmise põhja- ja pinnavee saastumise vältimiseks on sõnnikuunast 8 kuu mahutavusega sõnnikuhoidla omamise/rajamise nõudest.

Katmata sõnnikuaunast (Foto 39) võib sademetevee ja väljanõrguva virtsa tõttu leostuda kuni 45% kaalumist ning 10% fosforist. Katmata sõnnikuaunast võib lenduda 25–30% lämmastikust, kaetud aunast kuni 20%.

Aunad tuleks paigutada põllule nii, et laotamise ajal oleks laoturi tühisöitude maht võimalikult väike, vähendas seega põldude asjatut tallamist.

8.12.6. Tahesõnniku laotamine ja mulda viimine

Sõnniku parima laotamistehnoloogia valik peab tagama:
- välisõhu, pinna- ja põhjavee kvaliteedi säilimise keskkonnanormatiividele vastavana;
- sõnniku reoainete emissioonid ühiskonda põletades

Kultuurirada põllu tuleb tahesõnniku laotamise järele mulda viia 48 tunni jooksul (Veeseadus. – RT I, 27.06.2013). Põllule laotatud, kuid sissekiibdamata tahesõnniku kergesti omastatavast lämmastikust lendub suhteliselt kiiresti ammoniaagina atmosfääri 50–60% (BalticDeal, 2012a).

Tahesõnnikulaoturiga laotatava sõnniku kuivainesisaldus peab olema üle 15%. Tulenevalt tahesõnniku ebaühtlasest konsistentsist on selle ühtlane doseerimine keerukas.

Sõnnikut tohib laotada ainult tõökorras oleva sõnnikulaoturiga, mis sobib olemasoleva sõnnikutüübi laotamiseks. Laotamise vastavust kavandatud annusele ja laotamise ühtlikkust tuleb pidevalt kontrollida.

Tahesõnnikulaoturiga laotatava sõnniku kuivainesisaldus peab olema üle 15%. Tulenevalt tahesõnniku ebaühtlasest konsistentsist on selle ühtlane doseerimine keerukas.

Sõnnikut tohib laotada ainult tõökorras oleva sõnnikulaoturiga, mis sobib olemasoleva sõnnikutüübi laotamiseks. Laotamise vastavust kavandatud annusele ja laotamise ühtlikkust tuleb pidevalt kontrollida.

Tahesõnnikulaoturiga laotatava sõnniku kuivainesisaldus peab olema üle 15%. Tulenevalt tahesõnniku ebaühtlasest konsistentsist on selle ühtlane doseerimine keerukas.
Laotamiskettad asuvad osaliselt laoturi kasti põhja tagaserva all. Laotamisseade koosneb kahest või enamast pöörlevast horisontaalsest kettast, mis on tavaliselt labadega. Kettad võivad olla ka kallsed (foto 41). Kettad saavad ajami kas hüdromootorilt või jõuõhuvoolilt.

Mõnel ketaslaoturil on võimalik tahesõnniku jaotumist seada nii, et ühelt küljel on laotuskaugus väiksem (foto 41), võimaldades seega laotada pölluservale lähemal ilma, et sönnik lubatust kaugemale paiskaks.

Tagaluugid (foto 43) võimaldavad transpordi ajaks kattha laotamisseadmed nii, et sönnik sealt välja ei pudeneks. Tavaliselt on laotamise ajal mõlemad tagaluugid avatud, kuid neid on võimalik avada ka ühekaupa ja seega laotada väiksema ulatusega, näiteks pöörderibade väetamisel (Joskin, 2011). Peenetükilise materjali laotamiseks on mõnel laoturil võimalik kasutada ka biitrite katet (foto 42), mis on üks tervik. Sellisel juhul on laotamisketaste taga eraldi väikse hübriidilise ajami laotusele, mida võimalik kasutada küljepiirajatena.

Foto 41. Kui ketaslaotamisseade on kallutatud, siis on madalamal küljel laotamiskaugus väiksem kui kõrgemal küljel (Samson, 2010b)

Foto 42. Laotamisseadme kate ja küljepiiraja (Joskin, 2011)

Foto 43. Mõnele tahesõnniku laoturile on võimalik lisada tellinda tagaluugid (Joskin, 2011)

Etteandekonveier surub materjali vastu rootorit, mis haarab materjali kaasa, veab läbi rootori korpu ja heidab välja vastavalt rootori katte asendile. Kui rootori katte ehitus ja/või asend on ebasobivad või toimuda ka sönniku liigne peenestumine (sõltuvalt katte nurgast materjal kas libiseb sellel või laguneb) (Landry, 2005).

Foto 44. Külglaoatamise ja punkermahutiga tahesõnniku laotur (Kuhn, 2012)

Etteandekonveier surub materjali vastu rootorit, mis haarab materjali kaasa, veab läbi rootori korpu ja heidab välja vastavalt rootori katte asendile. Kui rootori katte ehitus ja/või asend on ebasobivad, võib toimuda ka sönniku liigne peenestumine (sõltuvalt katte nurgast materjal kas libiseb sellel või laguneb) (Landry, 2005).

Joonis 29. Külglaoatamisega rootorlaoturi etteandeseadmena kasutatakse a) tiikukonveierit või b) kett-liistkonveierit (Landry, 2005).

Külglaoatamisega kootlaoturil on kett-kootidega pikibiiiter (joonis 30 ja foto 45). Biiter pöörleb ja liigub samas ülalt alla sönnikut järjepidevalt koottiostega haarates ja vastavalt juhtkilbiga määratud suuna laoturist välja heites. Laotamisnormi saab seada võlli pöörlemis- ja laskumiskiiruse muutmiseks. Toodetakse ka laotureid,

![Joonis 30. Külglaotamisega pikiibiitriga kootlaoturi tööpõhimõtte skeem (Landry, 2005).](image)

![Foto 45. Külglaotamisega pikiibiitriga kootlaotur. Antud mudelil on biitri telje korgus mahuti põhja suhtes samal korgusel (HiSpec, 2012).](image)

Tahesõnnikulaoturite orienteeruv maksumus on toodud tabelis 34.

Tabel 34. Tahesõnnikulaoturite orienteeruv maksumus

<table>
<thead>
<tr>
<th>Tüüp</th>
<th>Maksumus, eurot</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tahalaotamisega rööhtbiitritega Iaoturid</td>
<td>8200 - 33500</td>
<td>4.5...12 t</td>
</tr>
<tr>
<td>Tahalaotamisega püstbiitritega Iaoturid</td>
<td>23 500 - 60 000</td>
<td>8...22 t</td>
</tr>
</tbody>
</table>

8.13. Poolvedel sönnik

8.13.1. Poolvedela sönniku omadused

Sönnik, mille kuivainesisaldus on vahemikus 15–20% ei voolu enam kuigi hästi, kuid samas to ei ole püsiv ka aunnana. Sönniku omadused olenevad selle osakeste suurusest. Liiva kasutamisel allapanuta suureneb külku kuivainesisaldus, kuid sönnik kääbub ikkagi nagu vedel või poolvedel sönnik (OSU, 2006).

Enamus allapanuta sönnikut on sönniku koostise nõuete alusel poolvedel sönnik. 2012. aastal Põllumajandususuringute Keskuses analüüsitud veisesõnnikuproovidest osutusid 56%, seasisõnnikuproovidest vastavalt 25% poolvedelateks.

Poolvedel sönniku tootmine ei ole üldiselt soovitatav, kuna seda on keerukas laadida, transportida kui ühtlasi laotada. Vahel lisatakse sönnikule käitlemise lihtsustamiseks vett, kuid sel juhul on otstarbekam juba kogu tehnoloogia välja ehitada vedelsõnnikusüsteemina (Luts, 2009).

8.13.2. Kääitustehnoloogiad

Kui poolvedel sönnik on nii voolav, et seda on võimalik pumbata, siis kasutatakse enamasti vedelsõnnikutehnoloogiaid. Silmas tuleb aga pidada, et mida raskemini vedelik voolab, seda suurem on energiakulu pumpamisele. Seega on soovitavat kasutada poolvedelaja sönniku käitlemisel otseveetehnoloogiat (st sönnikut transporditakse ja laotatakse põllule sama masinaga), mispuhul ümberpumpamise vajadus on minimaalne.
Kui poolvedela sönniku laotamisel kasutatakse tahesõnnikulaotureid, siis on samuti soovitavat kasutada otseveotehnoloogiat, kuna seda materjali ei ole võimalik pölluservale annastada ning ümberlaadimine pöllul on tülikas.

8.13.3. Laotuseks valmendamine

Poolvedela sönniku vedelsõnnikuna kätitlemiseks, siis on soovitatav kasutada otseveotehnoloogiat, kuna seda materjali ei ole võimalik põlluservale aunastada ning ümberlaadimine põllul on tülikas.

Võimaluseks on ka poolvedelale sönnikule tahedat (põhku, turvast, saepuru vmt) materjali lisamine, et seda kaitelda tahesõnnikuna. Taheda lisendi segamist poolvedela sönnikuga on aga tehnoloogiliselt keerukam ja kulukam korraldada kui vee lisamist.

Nii vedeldamisel kui paksendamisel suureneb sönniku kogus, mis tähendab ka suuremaid transpordi- ja laotusmahtusid võrreldes algse materjaliga.

8.13.4. Hoidlast laadimine

Labarootorpumpadega on pumbatav kuni 15% kuivainesisaldusega materjal (Fulhage ja Pfost, 2001). Mõned tootjad lubavad pumbata oma pumpadega, mis on varustatud lõikeseadmega söödajaajakide ja allapannu peenestamiseks, ainult kuni 12% kuivainesisaldusega poolvedelsõnnikut. Sarnaselt teiste poolvedelate materjali teisaldamiseks sobib ka poolvedela sönniku teisaldamiseks ekstsentrikrungi-pump. Spetsiaalselt poolvedela sönniku teisaldamiseks on projekteeritud fotol 46 olev kolbpump. See suudab pumbata poolvedelat sönnikut kuni 100 m kaugusele (Jamesway, 2012).

Kui poolvedel sönnik ei ole pumbatav, siis kasutatakse selle hoidlast veokile laadimiseks kopplaadurit. Sel juhul peab hoidla konstruktsioon võimaldama kopplaadurlil sönnikut seal kiirtena saada.
8.13.5. Laotamine ja mulda viimine

Poolvedela sönniku laotamiseks sobib ka tahalaotamisega tahesõnnikulaotur, millel on kastmahuti, voootõke ja laotamiskettad (foto 50). Sel juhul peab kasti põhi olema kinnine ja voootõke piisavalt tihe, et transpordi ajal sealt sönnik läbi ei pääseks.

Laoturi kasti täitmisel poolvedela sönnikuga tuleb jälgida, et laoturi kandevöömet ei ületataks, kuna see võib olla projekteeritud suurema kuivainesisaldusega ja seega enamasti väiksema mahumassiga tahesõnniku laotamiseks. Teiseks tuleb arvestada kallakutega laoturi liikumisteekonnal vältimaks sönniku üle laoturi kasti serva voolamist.

8.14. Sönnikulaotustehnoloogiate majanduslik võrdlus

Väetiste kasutamise otstarbekus sõltub ka transpordikaugusest hoidla ja põllu vahel. Otseveoga (sisestusseade) tasub vedelsõnnikut põllule vedada 1,5 km, tahesõnnikut kuni 3 km kaugusele (joonis 32). Kaugemate põludge väetamisel kasutada etteveotehnik, kuna siis on laoturiga transportimise kulud kõrgem kui veo ja ümberlaadimise kulutest. Lisaks on laotamisperiood lühem, kuna laoturi tööajast kulub veole ja tühisööitudele väiksem osa.

Loomakasvatusettevõtetes, kus toodetakse nii tahe- kui vedelsõnnikut, kasutatakse sageli mõlemat tehnoloogiat. Sel juhul tasub hoidlale kõige läheval asuvatele põldele laotada tahesõnnikut ja kaugematele vedelsõnnikut etteveoga.

Joonisel 32. esitatud tehnoloogiate võrdluse alused:

- Nii vedelsõnniku kui mineraalväetistega anti põllule 72 kg/ha lämmastikku.
- Laotamisnormid olid arvutustes järgmised: mineraalväetis NPK 16-5-13+3,5S 450 kg/ha, 20,2% kuivainesisaldusega veise tahesõnnik 28 t/ha ja 7,1% kuivainesisaldusega veise vedelsõnnik 40 t/ha.
- Ettevõttes tekib 6000 m³ vedelsõnnikut aastas, mille laotamisperiood on 40 päeva, ning 3000 t tahesõnnikut laotamisperioodiga 20 päeva

Vaadeldud väetamistehnoloogiad olid järgmised:

- mineraalväeties laaditakse kopplaaduriga haagisele ja veetakse sellega põllule, laotatakse ketaslaoturiga;
- tahesõnnik, laaditakse kopaga, veetakse ja laotatakse laoturiga ning põld käitakse mulda;
- tahesõnnik laaditakse kopaga, veetakse põllule traktorihaagisega, laotatakse laoturiga ning käitakse mulda;
- vedelsõnnik homogeniseeritakse, pumbatakse ketasseadisega laoturisse, veetakse sellega põllule ja viiakse mulda;
- vedelsõnnik homogeniseeritakse, pumbatakse ketasseadisega laoturisse, veetakse sellega põllule ja laotatakse ümber ketasseadisega laoturisse ning viiakse mulda;
- vedelsõnnik homogeniseeritakse, pumbatakse lohisooliklaoturisse, veetakse sellega põllule ja laotatakse; täiendavaks tööoperatsiooniks on kerandraaalgis vedelsõnniku mulda segamine.
Joonis 32. Väetamiskulud toitainetele erinevate tehnoloogiate korral sõltuvalt põlū keskmisest kaugusest

Punktiiriga aste joonisel 32 näitab veel ühe samasugune laotamisagregaadi lisandumist sellisel põlū kaugusel.

8.15. Müra vähendamise tehnikad

Intensiivsetse veisekasvatustest lähtuv müra ei ole tavaliselt oluliseks keskkonnasaaste allikaks. Müra võib osutuda probleemiks juhul, kui ettevõte (laut) paikneb elurajoonide vahetus läheduses. Laudasisesel on müratase üheks loomade heaolu ja personali töökliinika mõjutavaks faktoriks. Müra intensiivsus vähendavad:

- Laudatööde täpne planeerimine
- Mürabarjääride kasutamine
- Madala müratasemega seadmete kasutamine

Elurajoonide naabruses paiknevates ettevõtetes tuleks hoiduda kõrge müratasemega seadmete kasutamisesta ja nädalalõppudel. Loomi ei tohi põhjusetult häirida, kuna see suurendab samuti laudast lähtuva müra intensiivsust.

8.15.1. Ventilatsioonisüsteemist lähtuv müra

Kardinaalseim moodus ventilatsioonisüsteemist lähtuv müra likvideerimiseks on sundventilatsiooni (ventilatorid) asendamine loomuliku ventilatsiooniga. Samuti säästab loomuliku ventilatsiooni kasutamine energiat. Soojustatud lautades ei ole loomuliku ventilatsiooni rakendamine sageli sisekliima parametreid parameetrite halvenemise tõttu võimalik.

Ventilatsioonisüsteem tuleb projekteerida optimaalne s.t. minimaalne ventilaatorite arv, mis tagab piisava õhuvahetuse laudas.

Sundventilatsiooniga lautades on soovitatav kasutada madala müratasemega ventilaatoreid. Ventilaatorist lähtuva müra intensiivsus kasvab tiiviku diameetri ja pöörlemissageduse suurenedes.

Müra (helilainete) levimine (peegeldumine, sumbumine) laudas sõltub piirete jms. materjalist. Siledatelt pindadelt helilained tavaliselt peegelduvad, ebatasastel (näiteks heina- ja põhupallid) aga neelduvad.
8.15.2. Laudatöödest lähtuv müra

Intensiivses veikeskasvatuses on enamik tegevusi seotud liikurmasinate (traktorite) kasutamisega. Sellest tulenevalt on esmaseks müra vähendamise aluseks traktorite heitgaasisüsteemide ja summutite korrasolek.

a) Söötmine. Söötade käitlemisel ja jaotamisel tekivad müra sõõdajaotusseadmed (segistid, jaoturid) ning traktorid. Masinastest põhjustatud müra häärivat mõju, intensiivsust ja kestuste vähendavad:

- Söödahoidlate otstarbekas paigutamine võimalikult kaugesele elurajoonistest.
- Söödahoidlate otstarbekas paigutamine, mis võimaldab traktoritel liikuda optimaalsel trajectooril.

Lautades, kus kasutatakse isujärgi (adlibitum) söötmise tehnoloogiat (sööta uuendatakse söödalaval regulaarselt) on loomad rahulikumad. Normeeritud söötmise korral põhjustavad loomad oluliselt rohkem müra, eriti söödade jaotamisel ajal.

b) Sõnniku käitlemine. Erinevate konveierite ja skreeperseadmete poolt tekitavat laudasisena müra on suhteliselt tagasihoidlik. Sõnniku eemaldamisel laudast traktori lauplaaduri või buldooseriga ja transpordil peaks sõnnikuhoidla olema paigutatud lauda suhtes optimaalselt (võimalikult lauda lähedale ning eemale elurajoonistest).

c) Lüpsmine. Lüpsmisel on peamisteks müraallikates vaakumpumbad ja piimajahutusseadmed. Tavapäraselt on nimetatud seadmed (kompessorid) paigaldatud isoleeritud ruumidesse, mis vähendavad mürataset oluliselt. Samuti on soovitav kasutada madalama müratasesega kompressoreid.

8.15.3. Helibarjääride paigaldamine

Helibarjääride rajamise vajadus sõltub lauda asukohast. Elurajoonist lähedal asuvate ettevõtete vajalik.

9. Parim võimalik tehnika

Käsboardikas peatükis käsitletakse tehnoloogiaid, saasteainete eritumist ja tootmiseks vajalike materjalide (söödad, energiakandjad jne.) kulu parima võimaliku tehnikana (PVT) aspektist. Parima võimaliku tehnikana kirjeldus on saadud erinevate tehnoloogiliste lahenduste kaasneva saasteainete eritumise ja/või materjalide kulu näitajatega. PVT määratlemise etapid:

- Põhiliste keskkonnaprobleemide selgitamine: ammoniaagi ja lõhnaainete lundamine atmosfääri; lämmastiku, fosfori ja kaaliumi leostumine pinnasesse, põhja ning pinnavette, samuti energia, vee ning muude materjalide kasutamine.
- Ülalnimetatud faktorite etamusesest tegevuste uurimine.
- Madalama saastetasemega (keskkonnasäästlikuma) tehnoloogia selgitamine lähtuvalt Eestis, Euroopa Liidus ja mujal maailmas teostatud uuringute tulemustest. Tavapäraselt on keskkonnasäästliku tehnoloogia kriteeriumiks saasteainete emissioon atmosfääri ning leostumine.
- Majanduslike ja sotsiaalsete faktorite selgitamine, mis mõjutavad tehnoloogiate keskkonnasäästlikkuse parandamist ja saastekoormuse vähendamist, nagu omahind, ekspluatatsioonikulud, ressursside kokkuhoid, jms.
- Parima tehnoloogilise lahenduse (PVT) kirjeldamine koos saasteainete eritumise ja/või materjalide kulu näitajatega.

9.1. Hea põllumajandustava

Hea põllumajandustava järgimine (vt. pt. 7.1, joonis 2) vähendab paljude keskkonna- ja sotsiaalsete probleemide tekke võimalust ja on seega PVT. Hea põllumajandustava järgimine on soovitluslik, välja arvatud juhul kui HPT nõuete täitmist ei ole muudetud õigusaktiga kohustuslikuks.

85
9.2. Veiste intensiivpidamine

Söömine. Veiste söömine toimub söödaratsioonide alusel, mis koostatakse looma- gruppidele eraldi, arvestades nii loomade vanust kui ka lüpsilehmade laktatsioonifaasi. Looma tervise ja looduskeskkonda silmas pidades on oluline, et ratsioonid kajastaksid kõikide olulist toitefaktorite tarvet ja nende balansseeritud. Söltumata söömisviisist (tehnoloogiast) on PVT:

- Ratsioonis kasutatakse kvaliteetseid ning laboratoorselt analüüsitud söötasid.
- Ratsioon on koostatud vastavalt looma (loomarühma) füsioloogilisele tarbele (söömisnormidele).

Söömis tehniloogia valikul arvestatakse nende positiivsete ja negatiivsete mõjudega produktiivsusele, looma tervisele ja keskkonnale. Täisratsioonilise segasööda (TRSS) söömise tehniloogia kasutamine eeldab häid erialaseid teadmisi. Et loomadel kaob vabadus söötasid valida vastavalt isule ja toitefaktorite tarbele, on oluline ka söötad segamise ühtlikkus.

Loomade grupeerimisel arvestatakse nii karja suuruse, produktiivsuse, geneetilise piimakasvu võime, loomade toitumuse kui tööjõu vajadusega. Läähtetakse põhimõttest, mida enam moodustatakse söömisgruppe, seda otstarbekamalt loomi söödetakse ja seda paremini kaetakse nende toitefaktorite tarve. Täisratsioonilise segasööda söömisel on PVT:

- Loomade grupeerimine toodangu, laktatsioonifaasi või mingi muu parametri alusel (Kärt 2011).
- Söötate segamise ühtlikkus.

Jootmine. Veiste jootmine sõltumata kasutatavast tehniloogiasest (seadmetest) on PVT:

- Joogivesi on loomadele alati vabalt kättesaadav (k.a. karjamaal).
- Jootmisseadmed on tehniliselt korras (mitte lekkivad).

Jootmisseadmed on paigaldatud kahtluses ja toitefaktorite tarve, samuti on vähistatud allapanu niiskumine jookiveega.

9.3. Lüpsmine ja lüpsiseadmed

Söltumata kasutatavatest seadmetest on lohmade lüpsmisel PVT:

- Optimaalse tasemega stabiilne vaakum lüpsisüsteemis (loomade heaolu, piima kvaliteet).
- Piima jõudmine udarast jahutisse ilma laudaõhuga kokkupuuteta (piima kvaliteet).
- Lüpsisüsteemi pesu optimaalsel režiimil (piima kvaliteet, ökonoomne vee kasutamine).

läpsmiseks üha enam täisautomaatseid läpsirobereid. Lüpsikohtade arv robotlüpsiga laudas sõltub karja suurusest. Keskmiselt arvestatakse ühe lüpsikohakohta 60-70 lehma.

9.4. Sõnniku eemaldamine laudast

PVT- st saadav efekt realiseerub järgmiste tingimuste täitmisel:
- Piisav allapanu kogus.
- Optimaalse sageidusega sõnniku eemaldamine.
- Sõnnikueemaldussüsteemide tehniline korrasolek.

PVT (parim võimalik tehnika) sõnniku eemaldamisel lõaspidamisega laudast on:
- Optimaalse pikkusega asemed. Lattkraapkonveier koos sõnnikupressuriga.
- Optimaalse pikkusega asemed. Skreeperseade koos sõnnikupressuriga.

Olemasolevates lõaspidamisega lautades on tingimisi PVT kettkraapkonveier koos kaldkonveieriga ja sõnniku eemaldamine mobiilsete seadmetega.

Uutele (projekteeritavatele) ja/või renoveeritavatele lõaspidamisega lautadele ei ole sõnniku eemaldamine kettkraap- ja kaldkonveiersüsteemiga või mobiilsete seadmetega PVT.

Vabapidamisega laudad. Vabapidamisega laudad on soojustamata või osaliselt soojustatud, loomuliku ventilaatsiooniga uued või soojustatud laudast vabapidamiseks kohandatud (rekonstrueeritud) ehitised. Vabapidamisega laudadest saadakse vedel- (poolvedel) või sügavallapanul pidamisviisi korral tahesõnnikut.

Loomade heaolust (loomakaitse seadusest) tulenevalt on vabapidamine PVT.

PVT sõnniku eemaldamisel vabapidamisega laudast on:
- Sügavallapanul pidamisviisi puhul piisavas koguses allapanu. Skreeper- või mobiilsed seadmed.

Olemasolevates vabapidamisega lautades on PVT ka osaline restpörand sõõtmis-puhkealal ja liikumiskäikudes ning paiskanalite süsteem.

Olemasolevates vabapidamisega lautades on tingimisi PVT osaline restpörand sõõtmis-puhkealal ja liikumiskäikudes ning pidamisviisi puhul piisavas koguses allapanu. Skreeper- või mobiilsed seadmed.

Olemasolevates vabapidamisega lautades on tingimisi PVT osaline restpörand sõõtmis-puhkealal ja liikumiskäikudes ning paiskanalite süsteem.

Uutele vabapidamisega lautadele ei ole sõnnikukeldet lauda all (täisrestpörand) PVT.

Võrreldes plastik või metallkonstruktsioonidega lendub betoonelementidest restpörandalt rohkem ammoniaaki. Plastik- ja metallkonstruktsioonid on PVT, kuid arvestada tuleb oluliselt kallima hinnaga

9.5. Heitekogused öhku

Lõaspidamisega laudad. Lõastatud pidamisviisi laudas vähendab saasteainete emissiooni atmosfäärri (PVT):

Optimaalse laiusega sõnnikukäik. Mida väiksem on sõnnikuga saastuv ala, seda vähem ammoniaaki lendub.

Regulaarne sõnniku eemaldamine laudast hoidlasse.

Piisavas koguses allapanu. Allapanu uuendamine asemetel vastavalt vajadusele.

Lõastatud pidamisviisi korral lendub atmosfääri tuvaliselt vähem saasteaineid kui vabapidamistehnoloogia lautades.

Vabapidamisega laudad. Vabapidamisega laudas vähendab saasteaineid emissiooni atmosfääri (PVT):

- Optimaalse pindalaga söötmis-puhkeala ja liikumiskäigud. Mida väiksem on sõnnikuga saastuv ala, seda vähem ammoniaaki lendub.
- Regulaarne sõnniku eemaldamine laudast (kanalitest) hoidlasse.
- Väljaheidetega saastuval alal siledate ja lihtsalt puhatatavate materjalide kasutamine.
- Piisavas koguses allapanul sügavallapanud pidamisviisi korral.

9.6. Energia

PVT energia tarbimisel lähtub heast põllumajandustavast, loomapidamishoonete projektieerimisel ja tehnoloogia ning seadmete valikust, samuti hoone ja seadmete eksploatatsioonist ning hooldusest jms.

Paljud võimalikud viisid ja vahendid, kuidas energiat efektiivsemalt kasutada on ära toodud punktis 7. 5. Rakendatavaid meetmeid tuleb enne kasutamist põhjalikult analüüsida, hinnates majanduslikku efektiivsust või mõnda muud kriteeriumi. Mingit liiki energiakulu vähendamine ei ole alati majanduslikult kõige ökonoomse.

Arvestades üldtoodet jagunevad energiakulu vähendamise viised üldjuhul kaheks:

- Ühe energialiigi asendamine teisega.
- Konkreetselt energieliigi tarbimise vähendamine.

Näiteks võib suurendada elektrilöögi kulu sõida jagamisel või sõnniku eemaldamisel, kui seda asendab muud spetsiaalselt kütuse- ning maailmavööndi kaspitamine. Seega võib elektrilöögi tarbimise vähendamine osutuda hoопis majanduslikult kõrge saastumise. Realaalne majanduslik efekt sõltub alati konkreetsetel olukordadel.

Parim võimalik tehni (PVT) veisekasvatustes energiatöötarbimisest lähtuvalt on:

- Loomakasvatusehoones on loomuliku ventilatsiooni süsteem (elektrilöögi kulu ventilatsioonile puudub). Soostatud lautades, kus loomuliku ventilatsiooni rakendamine ei ole võimalik on PVT ka sunventilatsioon (põhioonused ventilatoorid, optimaalne ventilatsioonirežiim).
- Valgustuses kasutatakse luminofoorlampme (energiasääst väärtedes hõõglampidega ca 60 %).
- Lüpsiplatsi kasutamine (elektrilöögi sääst võrreldes torusselüüpsiga ca 25 %);
• Vaakumpumpadele paigaldatud sagedusmuundurid. Võrreldes sagedusmuundurita vaakumpumbaga (näiteks läpsiplats DeLaval VMS) annab nimetatud lahendus 20 kWh elektrienergia kokkuhoidu ööpäevas.
• Puidu- või biomassikatla kasutamine kesküttesüsteemis soojusenergia ja sootoo vee saamiseks (elektrienergia kokkuhoid võrreldes elektroonikatla 95 %, kütus odav, kätla maksumus on väike). Soojusvahetite kasutamine piima jahutamisel tekkiva soojuse arakasutamisel.

9.7. Sõnniku ladustamine
Tulenevalt seadusandlusest (PVT) peab sõnnikuhooldla mahutama vähemalt 8 kuu sõnniku. Veekaitsete küttesüsteemis rõõmustab ja sõnnikuhooldlatele ning siloladustamiskohtadele ja sõnniku, silomahla ja muude võetiste kasutamise ja hoidmise nõuded. – RT I, 09.07.2013, 12
PVT tahesõnniku ladustamisel ja säilitamisel on:

• Betoneeritud alusega (vajadusel seintega) lekkekindel hoidla, mis on varustatud sõnnikukihist väljavalguva uriini, virtsa ja sademetevee mahutiga.
• Täiendavaks positiivseks faktoriks on tahesõnnikuhoidlale rajatud varikatus.
• Hoidla paikneb asustatud punktide (elurajoonide) suhtes optimaalselt (kaugus, virtsa ja virtsetud suund).
• Tahesõnniku ladustamine põllul ainas on kässeoleval ajal tinglikult PVT kui järgitakse rangalet seadusandlusest sätetatud nõudeid.

PVT poolvedel- ja vedelsõnniku ladustamisel ning säilitamisel betoon- ja teraselementidest hoidlas on:

• Põhja ja seinte lekke- ning korrosioonikindlus.
• Konstruktsioonide vastupidavus mehaaniliste, termiliste ja keemiliste mõjutuse suhtes.
• Süstemaatiiline konstruktsioonide kontroll ning hooldustööd, soovitavalgi kord aastas.
• Hoidla väljavoolu e. tühjendusava d on varustatud kahekordse klapiga.
• Sõnnikut segatakse ainult üks kord, vahetult enne laotamist.

PVT betoon- ja teraselementidest hoidla katmisel on:

• Kaas, katus või tent.
• Present- või plastkangas, samuti ujuvkate, mille materjaliks võib olla hekselpõhik, turvas, kergkruus, plastkraanil, rapsiõli või mõni mu saasteainete emissiooni vähendav materjal.

PVT poolvedel- ja vedelsõnniku säilitamisel olemasolevates laguun-tüüpi hoidlas on:

• Põhja ja seinte lekkekindlus.
• Konstruktsioonide vastupidavus mehaaniliste, termiliste ja keemiliste mõjutuse suhtes.
• Süstemaatiiline konstruktsioonide kontroll ning hooldustööd, soovitavalgi kord aastas.

PVT laguun-tüüpi hoidla katmisel on:

• Plastikkaate.
• Ujuvkate, mille materjaliks võib olla hekselpõhik, kergkruus vms. saasteainete emissiooni vähendav materjal.

Olemasolevad laguun-tüüpi hoidla katmise viis ja kattematerjali valik sõltub konkreetsest hoidlast. Mõnel juhul (suure või ebakorrapärase pinnaga hoidla) võib see osutada väga kalliks ja/või tehniliselt võimaluks.

Uutele (projekteeritavatele) ja/või renoveeritavatele loomakasvatushoonele laguuntüüpi hoidlate rajamine ei ole saasteainete emissiooni ning potentsiaalset põhjav eestimise aspektist PVT.

9.8. Sõnniku laotamine
Ammoniaagi emissioon sõnniku ja kääritusjäägi laotamisel sõltub tehnoloogia (seadmete) valikust. Tehnoloogia, mille kasutamisel ammoniaagi emissioon väheneb, langetab tavaliselt ka lõhnaainete lendumist.
Kõikidele sõnniku laotamise tehnoloogiatel on oma eripärad (sobimatu mõnele mullatüübile jms.), millega tuleb arvestada. Tabelis 35 on esitatud parima võimaliku tehnoloogia (PVT) variandid erinevate sõnniku laotamise meetodite ja kõlvikute lõikes. Ammoniaagi lendumise vähemine sõltub väga paljudest sõnniku laotamise ajal toimivatest faktoritest. Seejuures on tabelis toodud väärtused orienteeruvad.

Paljude sõnniku laotamise tehnoloogiate juures on määravaks teguriks toitainete, eriti ammoniaagi kadudele sõnniku kiire muldaviimine laotusjärgselt. Sagedasti nõuab see aga lisainvesteeringut (traktor, kultivaator vms.) ja energiakulu. Rohu- ja karjamaade puhul ei ole sõnniku muldaviimine paljude laotusmeetodite puhul üldse võimalik.

PVT sõnniku ja kääritusjäagi laotamisel põllumaa eelised on sisestus- ja segamislaotus. Sõnniku puhul on PVT ka, lohislaotus ning paisklaotus kui muldaviimine toimub 4...6 tunni jooksul. Kääritusjägi puhul paisklaotus ei ole PVT. Sõnniku ja kääritusjäagi laotamisel rohu- ja karjamaadele on PVT sisestus- ja lohislaotus. Paisklaotus sõnniku ja kääritusjäagi laotamisel rohu- ning karjamaadele ei ole PVT.

Tabel 35. PVT erinevate sõnniku laotamise meetodite ja kõlvikute lõikes

<table>
<thead>
<tr>
<th>Kõlvik</th>
<th>PVT</th>
<th>NH₃ emissiooni vähemine*</th>
<th>Sõnniku liik</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohumaa, põllud taimede kõrgusega < 30 cm</td>
<td>Lohisvooliklaotur</td>
<td>30 % (vööb olla väiksem kui tained on kõrgemad kui 10 cm)</td>
<td>Vedel, poolvedel</td>
<td>Ei sobi maadele, mille kallak on üle 10 %. Ei saa kasutada viskoosset või suure põhusisaldusega sõnnikut. Efektiivne suurtel ja korrapäraste kõlvikutel.</td>
</tr>
<tr>
<td>Rohumaa, põllud taimede kõrgusega > 8 cm</td>
<td>Düüsidega lohisvooliklaotur</td>
<td>40 %</td>
<td>Vedel, poolvedel</td>
<td>Ei sobi maadele, mille kallak on üle 20 %. Ei saa kasutada viskoosset või suure põhusisaldusega sõnnikut. Efektiivne suurtel ja korrapäraste kõlvikutel.</td>
</tr>
<tr>
<td>Rohu-, põllumaa</td>
<td>Avalõhega sisestuslaotur</td>
<td>60 %</td>
<td>Vedel, poolvedel</td>
<td>Ei sobi maadele, mille kallak on üle 12 %. Ei saa kasutada viskoosset või suure põhusisaldusega sõnnikut. Seadme efektiivsus sõltub multastiku tüübit.</td>
</tr>
<tr>
<td>Rohu-, põllumaa</td>
<td>Sulglõhega sisestuslaotur</td>
<td>80 %</td>
<td>Vedel, poolvedel</td>
<td>Ei sobi maadele, mille kallak on üle 12 %. Ei saa kasutada viskoosset või suure põhusisaldusega sõnnikut. Seadme efektiivsus sõltub multastiku tüübit.</td>
</tr>
<tr>
<td>Põllumaa</td>
<td>Lohisvooliklaotur, sõnniku muldaviimine 4 h jooksul</td>
<td>80 %</td>
<td>Vedel, poolvedel</td>
<td>Kõlvikutel, kus muldaviimine ei ole võimalik on lohisvooliklaoturi kasutamine PVT</td>
</tr>
<tr>
<td>Põllumaa</td>
<td>Paisklaotur, sõnniku muldaviimine 4...6 h jooksul</td>
<td>60 %</td>
<td>Vedel, poolvedel</td>
<td>Ilma kohese muldaviimiseta ei ole paisklaoturi kasutamine PVT</td>
</tr>
<tr>
<td>Põllumaa</td>
<td>Võimalikult kiire muldaviimine (vähemalt 12 h jooksul)</td>
<td>4...6 h: 80 % 12 h: 60...70 %</td>
<td>Tahe</td>
<td>Efektiivne kõlvikutel, kus on võimalik kiire muldaviimine</td>
</tr>
</tbody>
</table>

* Võrrelduna paisklaotatud ja muldaviimata vedelsõnnikust lenduvu ammoniaagi kogusega.
10. PVT hindamine ettevõtetes (lautades)

Tehnilisi lahendusi ja tehnoloogiaid hinnatakse keskkonnareostuse vähendmise, sobivuse (paigaldamine, jms), rakendatavuse (käättamine, jms), õkonomiuse, loomade heaolu ja maksumuse aspektist. Nimetatud aspektide hinnatakse lähutavalt iga konkreetse ettevõtte (lauda) geograafilisest paiknemisest, klimaatilistest tingimustest, pinnase (mullastiku) tüübist ja struktuurist jms. antud ettevõttele olulistest kriteeriumidest.

Intensiivses veisekasvatuses on valdkondadeks (kasutatav/rakendatav tehnika ja/või tehnoloogia), mis otseselt mõjutavad saasteainete eritumist ja potentsiaalset keskkonna reostumist pidamisviis (loomapidamishoonen), sõttmine, sõnniku eemaldamine laudast, sõnniku käitlemine ja ladustamine ning sõnniku laotamine. Keskkonna reostumise riski vähendab samuti otstarbekas jäätmetekaitlus. Teatavatel juhtudel (ettevõtte paikneb elurajoonide vahetus läheduses) tuleb tähelepanu pöörata tootmisprotsessi mõnedel etappidel tekivale mürasaastele. Perspektiivne on ka sõnnikutöötlemistehnoloogiate laialdasem rakendamine.

10.1. Pidamisviis (loomapidamishoonen) ja sõnnikueemaldussüsteem

Tabel 36. Pidamisviisi (loomapidamishoonen) ja sõnnikueemaldussüsteemide hinda skaala

<table>
<thead>
<tr>
<th>Pidamisviis/tehnoloogia</th>
<th>Saasteainete eritumine</th>
<th>Loomade heaolu</th>
<th>Käätamine, ekspluatatsioon</th>
<th>Energia-tarve</th>
<th>Vee-tarve</th>
<th>Maksumus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lõaspidamine, kettkaarp-, kaldkonveier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lõaspidamine, lattkaarpkonveier, sõnnikupressur</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Lõaspidamine, sõnnikupressur, skreeper</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Lõaspidamine, sõnnikupressur, mobiilsed seadmed</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Vabapidamine, mobiilsed seadmed</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Vabapidamine, osaline restpõrand, skreeper, sõnnikupressur</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Vabapidamine, osaline restpõrand, skreeper, valgkanalid</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Vabapidamine, osaline restpõrand, skreeper, uhtkanalid</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Vabapidamine, osaline restpõrand, skreeper, mõõdusseadmed, valgkanalid</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vabapidamine, osaline restpõrand, valg- või uhtkanalid</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Vabapidamine, osaline restpõrand, paikkanalid</td>
<td>-2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Vabapidamine, sügavallapanu, mobiilsed seadmed</td>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Vabapidamine (kaldpind), sügavallapanu, skreeper, sõnnikupressur</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
hindeskaala vörreldava pidamisviisi ja sõnnikueemaldustehtnooliagiaga:

- 0 – sarnane
- -1 – mõnevõrra halvem
- -2 – oluliselt halvem
- 1 – mõnevõrra parem
- 2 – oluliselt parem

2 Vasikate (0…6 kuud) lõastatud pidamine on keelatud.
3 Sõltub tehnika ja konstruktsooni korrasolekust. Lagunenud konstruktsioonid ja amortiseerunud tehnika kasutamine suurendab saasteainete eritumist, ei ole PVT.
4 Sõltub tehnika ja konstruktsooni ning loomade parameetrite ja arvu vastavusest. Lühike ase, ebapiisav sõõdalava pikkus vms. vähendab loomade heaolu, ei ole PVT

10.2. Sõnniku ladustamine ja –hoidlad

Tabelis 37 on toodud sõnniku ladustamise ja säilitamise tehnoloogiate hindeskaala. Hindeskaala aluseks on tahesõnniku säilitamine lekkekindlas, avatud pinnakihiga betoonelementidest hoidlas.

Tabel 37. Sõnniku ladustamine ja säilitamise tehnoloogiate hindeskaala

<table>
<thead>
<tr>
<th>Ladustamise ja säilitamise tehnoloogia</th>
<th>Saasteainete eritumine</th>
<th>Käitamine, eksploatatsioon</th>
<th>Maksumus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lekkiv (amortiseerunud) hoidla ei ole mingisugustel tingimustel PVT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sõnniku naamatu kateks võib olla kile, hekselpõhk, turvas, saepuru vms. saasteainete emissiooni pidurdav materjal. Naturaalne koorik saasteainete emissiooni ei vähenda.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betoonistemidest poolvedel-või vedelsõnniku hoidlas maksus on keskmiselt 17,5 eur/m³, teraselementidest hoidlal 26-28 eur/m³.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betooni või teraselementi suuruse kohas on keskmiselt 8,4 eur/m³.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sõnniku keskkonnasäästliku laotamise eelduseks on suhteliselt kalli eritehniku olemasolu, eriti poolvedel- ja vedelsõnniku korral. Saasteainete emissioon ning loestumine sõltub sõnniku laotamise täpset ajastamist, mullastiku tüübid jms. faktoritest. Tabelis 38 on toodud enamlevinud sõnniku laotamise tehnoloogiate hindeskaala. Hindeskaala aluseks on tahesõnniku laotamine põllumaa paisklaoturiga ning muldavimine 6 tunni jooksul.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel 38. Sõnniku laotamise tehnoloogiate hindeskaala

<table>
<thead>
<tr>
<th>Tehnoloogia</th>
<th>Saastainete eritumine</th>
<th>Käätimine, ekspluatatsioon</th>
<th>Kasutamine põllumaal</th>
<th>Kasutamine vegetatsiooni perioodi kestel ja/vöi rohumaal</th>
<th>Annustamise täpsus</th>
<th>Lissa-tööde vajadus (muldaviimine)</th>
<th>Maksmus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tahesõnniku paisklaotamine</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotamine</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>1</td>
<td>-1</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Vedelsõnniku lohisvoolikloatamine</td>
<td>1</td>
<td>-1</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>+2</td>
<td>-1</td>
</tr>
<tr>
<td>Vedelsõnniku düüsidesega voolik-loatamine</td>
<td>2</td>
<td>-1</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>+2</td>
<td>-1</td>
</tr>
<tr>
<td>Vedelsõnniku segamislaatamine</td>
<td>2</td>
<td>-1</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-2</td>
</tr>
<tr>
<td>Vedelsõnniku sisestus-loatamine (avalõhe)</td>
<td>2</td>
<td>-1</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>-</td>
<td>-2</td>
</tr>
<tr>
<td>Vedelsõnniku sisestus-loatamine (ketastega sulglohe)</td>
<td>2</td>
<td>-1</td>
<td>+</td>
<td>+</td>
<td>2</td>
<td>-</td>
<td>-2</td>
</tr>
<tr>
<td>Vedelsõnniku sisestus-loatamine (piidega sulglohe)</td>
<td>2</td>
<td>-1</td>
<td>+</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-1</td>
</tr>
</tbody>
</table>

1. Vedelsõnniku paisklaotamine kasvavale taimikule ja/vöi rohumaadele (muldaviimine ei ole võimalik) suurendab märgatavalt saaste- ja lõhnaainete emissiooni. Ei ole PVT.
2. Vajalik ainult põllumaal.
3. Tehnika rakendamine sõltub mullastiku tüübist. Ei sobi kivistele ja savistele (rasketele) muldadele.

10.4. Lüpsisüsteem

Lüpsisüsteemi on võimalik hinnata eelkõige piima kvaliteedi, loomade heaolu (udara tervis), lüpsja koormuse ja maksumuse aspektist (tabel 39). Hindeskaala aluseks on torusselüpsisüsteem lõəspidamisega laudas.

Tabel 39. Lüpsisüsteemide hindeskaala

<table>
<thead>
<tr>
<th>Lüpsisüsteem</th>
<th>Piima kvaliteet</th>
<th>Loomade tervis ja heaolu</th>
<th>Lüpsja koormus (lüüsilise töö osatähtsus)</th>
<th>Maksumus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torusselüps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ambriisölüs</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>Platsillüps</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Robotlüps</td>
<td>2</td>
<td>2</td>
<td>X</td>
<td>-2</td>
</tr>
</tbody>
</table>

1. Sõltub stabiliise vaakumi tagamisest lüpsisüsteemis
2. Sõltub loomade arvust9 s.t. vajaliku piima- ja vaakumliini pikkusest
3. Robotlüpsiga laudas lüpsjaid ei vajata
11. Kokkuvõte

PVT kriteeriumidele vastavate tehnoloogiate ning seadmete rakendamine vähendab ühelt pooll koormust ümbristevale keskkonnale (saasteaineetemissiooni ja leostumise vähenemine) samal ajal paraneb loomade tervislik seisund (madalamad ravikulud) ning inimeste töökäsitsemisnäitajad. Üheks näitajaks, mille alusel on võimalik komplekssest hinnata rakendatavate tehnoloogiate efektiivsust on sõnniklämmastiku kogus, mis jõuab põllul taimele. Kui 2013. aastal maksab mineraalne lämmastikvetis, näiteks ammooniumsalpeeter (NH_4NO_3, lämmastikusisaldus 34 %) keskmiselt 325 €/t, siis kujuneb kilogrammi lämmastiku hinnaks 0,94 €/kg. Võttes aluseks eeltoodud näitaja on täiendus 41 - 46 kalkuleeritud lendunud (loestunud) lämmastiku maksumus lehma kohta mõningate tehnoloogiliste lahenduste lõikes.

Tabel 41. Summaarne lämmastiku kadu (maksumus): lõaspidamine, katmata sõnnikuaun, tahesõnniku paisklaotus muldaviimiseta

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Piimatoodang, kg/aasta</th>
<th>Väljaheidetega erituv lämmastik, kg/aasta</th>
<th>Emissioonifaktor/leostumine, %</th>
<th>Lämmastiku kaod, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lõaspidamine, sõnnikueemaldus mobiilsel vahendiga 2…3 korda päeval, rohke allapanu (avatud süsteem)</td>
<td>8725</td>
<td>8725</td>
<td>8725</td>
<td>8725</td>
</tr>
<tr>
<td>Sõnnikuaun, loomulik koorik</td>
<td>134</td>
<td>134</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimiseta: jahe (< 10 °C) ja niiske</td>
<td>30</td>
<td>38,2</td>
<td>38,2</td>
<td>38,2</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimiseta: jahe (< 10 °C) ja kuiv</td>
<td>5</td>
<td>6,4</td>
<td>6,4</td>
<td>6,4</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimiseta: palav (>25 °C) ja niiske</td>
<td>20</td>
<td>16,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimiseta: palav (>25 °C) ja kuiv</td>
<td>25</td>
<td>20,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulda viidud lämmastiku kogus, kg</td>
<td>38</td>
<td>31,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %</td>
<td>48</td>
<td>39,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)</td>
<td>66,2</td>
<td>62,1</td>
<td>51,3</td>
<td>43</td>
</tr>
<tr>
<td>Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %</td>
<td>49%</td>
<td>46%</td>
<td>38%</td>
<td>32%</td>
</tr>
<tr>
<td>Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)</td>
<td>63,7</td>
<td>67,6</td>
<td>77,7</td>
<td>85,5</td>
</tr>
</tbody>
</table>
Tabel 42. Summaarne lämmastiku kadu (maksumus): sügavallapanul vabapidamine, katmata tahesõnnikuhooldus, tahesõnniku paisklaotus muldaviimisega < 24 h

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Piimatoodang, kg/aasta</th>
<th>Väljaheidetega erituv lämmastik, kg/aasta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8725</td>
</tr>
<tr>
<td></td>
<td></td>
<td>134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tehnoloogia</th>
<th>Emissioonifaktor</th>
<th>Lämmastiku kaod, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vabapidamine, sügavallapanu</td>
<td>7,5</td>
<td>10,1</td>
</tr>
<tr>
<td>Tahesõnnikuhooldla, loomulik koorik</td>
<td>40</td>
<td>49,6</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimisega: jahe (< 10 °C) ja niiske</td>
<td>5</td>
<td>3,7</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimisega: jahe (< 10 °C) ja kuiv</td>
<td>8</td>
<td>5,9</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimisega: palav (>25 °C) ja niiske</td>
<td>13</td>
<td>9,7</td>
</tr>
<tr>
<td>Tahesõnniku paisklaotus muldaviimisega: palav (>25 °C) ja kuiv</td>
<td>25</td>
<td>18,6</td>
</tr>
</tbody>
</table>

Mulda viidud lämmastiku kogus, kg	70,7	68,4	64,7	55,8
Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %	53%	51%	48%	42%
Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)	59,5	61,6	65,1	73,5

Tabel 43. Summaarne lämmastiku kadu (maksumus): vabapidamine, sõnnikulaguun, vedelsõnniku paisklaotus muldaviimiseta

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Piimatoodang, kg/aasta</th>
<th>Väljaheidetega erituv lämmastik, kg/aasta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8725</td>
</tr>
<tr>
<td></td>
<td></td>
<td>134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tehnoloogia</th>
<th>Emissioonifaktor</th>
<th>Lämmastiku kaod, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vabapidamine, skreepeseadmed, sõnnikuemaldus >3 korda päevas, vähene allapanu</td>
<td>7,5</td>
<td>10,1</td>
</tr>
<tr>
<td>Vedelsõnnikuhooldla, laguun, loomulik koorik</td>
<td>20</td>
<td>24,8</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus muldaviimiseta: jahe (< 10 °C) ja niiske</td>
<td>20</td>
<td>19,8</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus muldaviimiseta: jahe (< 10 °C) ja kuiv</td>
<td>25</td>
<td>24,8</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus muldaviimiseta: palav (>25 °C) ja niiske</td>
<td>38</td>
<td>37,7</td>
</tr>
<tr>
<td>Vedelsõnniku paisklaotus muldaviimiseta: palav (>25 °C) ja kuiv</td>
<td>48</td>
<td>47,6</td>
</tr>
</tbody>
</table>

Mulda viidud lämmastiku kogus, kg	79,3	74,4	61,5	51,6
Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %	59%	56%	46%	38%
Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)	51,4	56,1	68,2	77,5
Tabel 44. Summaarne lämmastiku kadu (maksumus): vabapidamine, ringja põhiplaaniga katteta vedelsõnnikuhoiudla, vedelsõnniku lohislaotus muldaviimisega < 24 h

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Piimatoodang, kg/aasta</th>
<th>Väljaheidetega erituv lämmastik, kg/aasta</th>
<th>Tehnoloogia</th>
<th>Emissionifaktor %</th>
<th>Lämmastiku kaod, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piimatoodang, kg/aasta</td>
<td>8725</td>
<td>134</td>
<td>Vabapidamine, skreeperaseadm, sõnnikueemaldus >3 korda päevas, vähene allapanu</td>
<td>7,5</td>
<td>10,1</td>
</tr>
<tr>
<td>Väljaheidetega erituv lämmastik, kg/aasta</td>
<td>134</td>
<td>134</td>
<td>Vedelsõnnikuhoidla, ringja põhiplaaniga, loomulik koorik</td>
<td>10</td>
<td>12,4</td>
</tr>
<tr>
<td>Tehnoloogia</td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: jahe (< 10 °C) ja niiske</td>
<td>5</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: jahe (< 10 °C) ja kuiv</td>
<td>8</td>
<td>8,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: palav (>25 °C) ja niiske</td>
<td>13</td>
<td>14,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: palav (>25 °C) ja kuiv</td>
<td>25</td>
<td>27,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mulda viidud lämmastiku kogus, kg</td>
<td>106</td>
<td>102,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %</td>
<td>79%</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)</td>
<td>26,3</td>
<td>29,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mulda viidud lämmastiku kogus, kg</td>
<td>106</td>
<td>102,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %</td>
<td>79%</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)</td>
<td>26,3</td>
<td>29,5</td>
</tr>
</tbody>
</table>

Tabel 45. Summaarne lämmastiku kadu (maksumus): vabapidamine, ringja põhiplaaniga kattega vedelsõnnikuhoiudla, vedelsõnniku lohislaotus muldaviimisega < 24 h

<table>
<thead>
<tr>
<th>Näitaja</th>
<th>Piimatoodang, kg/aasta</th>
<th>Väljaheidetega erituv lämmastik, kg/aasta</th>
<th>Tehnoloogia</th>
<th>Emissionifaktor %</th>
<th>Lämmastiku kaod, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piimatoodang, kg/aasta</td>
<td>8725</td>
<td>134</td>
<td>Vabapidamine, skreeperaseadm, sõnnikueemaldus >3 korda päevas, vähene allapanu</td>
<td>7,5</td>
<td>10,1</td>
</tr>
<tr>
<td>Väljaheidetega erituv lämmastik, kg/aasta</td>
<td>134</td>
<td>134</td>
<td>Vedelsõnnikuhoidla, ringja põhiplaaniga, jääk kate (betoon-, telkkatus)</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td>Tehnoloogia</td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: jahe (< 10 °C) ja niiske</td>
<td>5</td>
<td>6,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: jahe (< 10 °C) ja kuiv</td>
<td>8</td>
<td>9,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: palav (>25 °C) ja niiske</td>
<td>13</td>
<td>15,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku lohislaotus muldaviimisega: palav (>25 °C) ja kuiv</td>
<td>25</td>
<td>30,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mulda viidud lämmastiku kogus, kg</td>
<td>115,4</td>
<td>111,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %</td>
<td>86%</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)</td>
<td>17,5</td>
<td>20,9</td>
</tr>
<tr>
<td>Näitaja</td>
<td>Piimatooodang, kg/aasta</td>
<td>Väljaheidetega erituv lämmastik, kg/aasta</td>
<td>Tehnoloogia</td>
<td>Emissioonifaktor %</td>
<td>Lämmastiku kaod, kg</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vabapidamine, skreepersedmed, sõnnikuemaldus >3 korda päevas, vähene allapanu</td>
<td>7,5</td>
<td>10,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnnikuhoidla, ringja põhiplaaniga, loomulik koorik</td>
<td>10</td>
<td>12,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku avalõhe sisestuslaotus rohumaal</td>
<td>10</td>
<td>11,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku segamislaotus</td>
<td>5</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku sulglõhe sisestuslaotus rohumaal</td>
<td>1</td>
<td>1,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vedelsõnniku sulglõhe sisestuslaotus põllumaal</td>
<td>1</td>
<td>1,1</td>
</tr>
<tr>
<td>Mulda viidud lämmastiku kogus, kg</td>
<td></td>
<td></td>
<td></td>
<td>100,4</td>
<td>106,0</td>
</tr>
<tr>
<td>Väljaheidetega eritunud lämmastiku kasutamise efektiivsus, %</td>
<td>75%</td>
<td></td>
<td></td>
<td>79%</td>
<td>82%</td>
</tr>
<tr>
<td>Lendunud lämmastiku maksumus, € (N-maksumus 0,94 €/kg)</td>
<td>31,6</td>
<td></td>
<td></td>
<td>26,3</td>
<td>22,1</td>
</tr>
</tbody>
</table>